5443 lines
162 KiB
C
5443 lines
162 KiB
C
/*
|
|
** This file contains all sources (including headers) to the LEMON
|
|
** LALR(1) parser generator. The sources have been combined into a
|
|
** single file to make it easy to include LEMON in the source tree
|
|
** and Makefile of another program.
|
|
**
|
|
** The author of this program disclaims copyright.
|
|
**
|
|
** Based on SQLite distribution v3.17.0
|
|
** Adopted for JavaScript by Artem Butusov <art.sormy@gmail.com>
|
|
*/
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
|
|
#define ISSPACE(X) isspace((unsigned char)(X))
|
|
#define ISDIGIT(X) isdigit((unsigned char)(X))
|
|
#define ISALNUM(X) isalnum((unsigned char)(X))
|
|
#define ISALPHA(X) isalpha((unsigned char)(X))
|
|
#define ISUPPER(X) isupper((unsigned char)(X))
|
|
#define ISLOWER(X) islower((unsigned char)(X))
|
|
|
|
|
|
#ifndef __WIN32__
|
|
# if defined(_WIN32) || defined(WIN32)
|
|
# define __WIN32__
|
|
# endif
|
|
#endif
|
|
|
|
#ifdef __WIN32__
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
extern int access(const char *path, int mode);
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
#else
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
/* #define PRIVATE static */
|
|
#define PRIVATE
|
|
|
|
#ifdef TEST
|
|
#define MAXRHS 5 /* Set low to exercise exception code */
|
|
#else
|
|
#define MAXRHS 1000
|
|
#endif
|
|
|
|
static int showPrecedenceConflict = 0;
|
|
static char *msort(char*,char**,int(*)(const char*,const char*));
|
|
|
|
/*
|
|
** Compilers are getting increasingly pedantic about type conversions
|
|
** as C evolves ever closer to Ada.... To work around the latest problems
|
|
** we have to define the following variant of strlen().
|
|
*/
|
|
#define lemonStrlen(X) ((int)strlen(X))
|
|
|
|
/*
|
|
** Compilers are starting to complain about the use of sprintf() and strcpy(),
|
|
** saying they are unsafe. So we define our own versions of those routines too.
|
|
**
|
|
** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and
|
|
** lemon_addtext(). The first two are replacements for sprintf() and vsprintf().
|
|
** The third is a helper routine for vsnprintf() that adds texts to the end of a
|
|
** buffer, making sure the buffer is always zero-terminated.
|
|
**
|
|
** The string formatter is a minimal subset of stdlib sprintf() supporting only
|
|
** a few simply conversions:
|
|
**
|
|
** %d
|
|
** %s
|
|
** %.*s
|
|
**
|
|
*/
|
|
static void lemon_addtext(
|
|
char *zBuf, /* The buffer to which text is added */
|
|
int *pnUsed, /* Slots of the buffer used so far */
|
|
const char *zIn, /* Text to add */
|
|
int nIn, /* Bytes of text to add. -1 to use strlen() */
|
|
int iWidth /* Field width. Negative to left justify */
|
|
){
|
|
if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){}
|
|
while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; }
|
|
if( nIn==0 ) return;
|
|
memcpy(&zBuf[*pnUsed], zIn, nIn);
|
|
*pnUsed += nIn;
|
|
while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; }
|
|
zBuf[*pnUsed] = 0;
|
|
}
|
|
static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){
|
|
int i, j, k, c;
|
|
int nUsed = 0;
|
|
const char *z;
|
|
char zTemp[50];
|
|
str[0] = 0;
|
|
for(i=j=0; (c = zFormat[i])!=0; i++){
|
|
if( c=='%' ){
|
|
int iWidth = 0;
|
|
lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
|
|
c = zFormat[++i];
|
|
if( ISDIGIT(c) || (c=='-' && ISDIGIT(zFormat[i+1])) ){
|
|
if( c=='-' ) i++;
|
|
while( ISDIGIT(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0';
|
|
if( c=='-' ) iWidth = -iWidth;
|
|
c = zFormat[i];
|
|
}
|
|
if( c=='d' ){
|
|
int v = va_arg(ap, int);
|
|
if( v<0 ){
|
|
lemon_addtext(str, &nUsed, "-", 1, iWidth);
|
|
v = -v;
|
|
}else if( v==0 ){
|
|
lemon_addtext(str, &nUsed, "0", 1, iWidth);
|
|
}
|
|
k = 0;
|
|
while( v>0 ){
|
|
k++;
|
|
zTemp[sizeof(zTemp)-k] = (v%10) + '0';
|
|
v /= 10;
|
|
}
|
|
lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth);
|
|
}else if( c=='s' ){
|
|
z = va_arg(ap, const char*);
|
|
lemon_addtext(str, &nUsed, z, -1, iWidth);
|
|
}else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){
|
|
i += 2;
|
|
k = va_arg(ap, int);
|
|
z = va_arg(ap, const char*);
|
|
lemon_addtext(str, &nUsed, z, k, iWidth);
|
|
}else if( c=='%' ){
|
|
lemon_addtext(str, &nUsed, "%", 1, 0);
|
|
}else{
|
|
fprintf(stderr, "illegal format\n");
|
|
exit(1);
|
|
}
|
|
j = i+1;
|
|
}
|
|
}
|
|
lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
|
|
return nUsed;
|
|
}
|
|
static int lemon_sprintf(char *str, const char *format, ...){
|
|
va_list ap;
|
|
int rc;
|
|
va_start(ap, format);
|
|
rc = lemon_vsprintf(str, format, ap);
|
|
va_end(ap);
|
|
return rc;
|
|
}
|
|
static void lemon_strcpy(char *dest, const char *src){
|
|
while( (*(dest++) = *(src++))!=0 ){}
|
|
}
|
|
static void lemon_strcat(char *dest, const char *src){
|
|
while( *dest ) dest++;
|
|
lemon_strcpy(dest, src);
|
|
}
|
|
|
|
|
|
/* a few forward declarations... */
|
|
struct rule;
|
|
struct lemon;
|
|
struct action;
|
|
|
|
static struct action *Action_new(void);
|
|
static struct action *Action_sort(struct action *);
|
|
|
|
/********** From the file "build.h" ************************************/
|
|
void FindRulePrecedences();
|
|
void FindFirstSets();
|
|
void FindStates();
|
|
void FindLinks();
|
|
void FindFollowSets();
|
|
void FindActions();
|
|
|
|
/********* From the file "configlist.h" *********************************/
|
|
void Configlist_init(void);
|
|
struct config *Configlist_add(struct rule *, int);
|
|
struct config *Configlist_addbasis(struct rule *, int);
|
|
void Configlist_closure(struct lemon *);
|
|
void Configlist_sort(void);
|
|
void Configlist_sortbasis(void);
|
|
struct config *Configlist_return(void);
|
|
struct config *Configlist_basis(void);
|
|
void Configlist_eat(struct config *);
|
|
void Configlist_reset(void);
|
|
|
|
/********* From the file "error.h" ***************************************/
|
|
void ErrorMsg(const char *, int,const char *, ...);
|
|
|
|
/****** From the file "option.h" ******************************************/
|
|
enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR,
|
|
OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
|
|
struct s_options {
|
|
enum option_type type;
|
|
const char *label;
|
|
char *arg;
|
|
const char *message;
|
|
};
|
|
int OptInit(char**,struct s_options*,FILE*);
|
|
int OptNArgs(void);
|
|
char *OptArg(int);
|
|
void OptErr(int);
|
|
void OptPrint(void);
|
|
|
|
/******** From the file "parse.h" *****************************************/
|
|
void Parse(struct lemon *lemp);
|
|
|
|
/********* From the file "plink.h" ***************************************/
|
|
struct plink *Plink_new(void);
|
|
void Plink_add(struct plink **, struct config *);
|
|
void Plink_copy(struct plink **, struct plink *);
|
|
void Plink_delete(struct plink *);
|
|
|
|
/********** From the file "report.h" *************************************/
|
|
void Reprint(struct lemon *);
|
|
void ReportOutput(struct lemon *);
|
|
void ReportTable(struct lemon *, int);
|
|
void ReportHeader(struct lemon *);
|
|
void CompressTables(struct lemon *);
|
|
void ResortStates(struct lemon *);
|
|
|
|
/********** From the file "set.h" ****************************************/
|
|
void SetSize(int); /* All sets will be of size N */
|
|
char *SetNew(void); /* A new set for element 0..N */
|
|
void SetFree(char*); /* Deallocate a set */
|
|
int SetAdd(char*,int); /* Add element to a set */
|
|
int SetUnion(char *,char *); /* A <- A U B, thru element N */
|
|
#define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
|
|
|
|
/********** From the file "struct.h" *************************************/
|
|
/*
|
|
** Principal data structures for the LEMON parser generator.
|
|
*/
|
|
|
|
typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
|
|
|
|
/* Symbols (terminals and nonterminals) of the grammar are stored
|
|
** in the following: */
|
|
enum symbol_type {
|
|
TERMINAL,
|
|
NONTERMINAL,
|
|
MULTITERMINAL
|
|
};
|
|
enum e_assoc {
|
|
LEFT,
|
|
RIGHT,
|
|
NONE,
|
|
UNK
|
|
};
|
|
struct symbol {
|
|
const char *name; /* Name of the symbol */
|
|
int index; /* Index number for this symbol */
|
|
enum symbol_type type; /* Symbols are all either TERMINALS or NTs */
|
|
struct rule *rule; /* Linked list of rules of this (if an NT) */
|
|
struct symbol *fallback; /* fallback token in case this token doesn't parse */
|
|
int prec; /* Precedence if defined (-1 otherwise) */
|
|
enum e_assoc assoc; /* Associativity if precedence is defined */
|
|
char *firstset; /* First-set for all rules of this symbol */
|
|
Boolean lambda; /* True if NT and can generate an empty string */
|
|
int useCnt; /* Number of times used */
|
|
char *destructor; /* Code which executes whenever this symbol is
|
|
** popped from the stack during error processing */
|
|
int destLineno; /* Line number for start of destructor. Set to
|
|
** -1 for duplicate destructors. */
|
|
char *datatype; /* The data type of information held by this
|
|
** object. Only used if type==NONTERMINAL */
|
|
int dtnum; /* The data type number. In the parser, the value
|
|
** stack is a union. The .yy%d element of this
|
|
** union is the correct data type for this object */
|
|
/* The following fields are used by MULTITERMINALs only */
|
|
int nsubsym; /* Number of constituent symbols in the MULTI */
|
|
struct symbol **subsym; /* Array of constituent symbols */
|
|
};
|
|
|
|
/* Each production rule in the grammar is stored in the following
|
|
** structure. */
|
|
struct rule {
|
|
struct symbol *lhs; /* Left-hand side of the rule */
|
|
const char *lhsalias; /* Alias for the LHS (NULL if none) */
|
|
int lhsStart; /* True if left-hand side is the start symbol */
|
|
int ruleline; /* Line number for the rule */
|
|
int nrhs; /* Number of RHS symbols */
|
|
struct symbol **rhs; /* The RHS symbols */
|
|
const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
|
|
int line; /* Line number at which code begins */
|
|
const char *code; /* The code executed when this rule is reduced */
|
|
const char *codePrefix; /* Setup code before code[] above */
|
|
const char *codeSuffix; /* Breakdown code after code[] above */
|
|
int noCode; /* True if this rule has no associated C code */
|
|
int codeEmitted; /* True if the code has been emitted already */
|
|
struct symbol *precsym; /* Precedence symbol for this rule */
|
|
int index; /* An index number for this rule */
|
|
int iRule; /* Rule number as used in the generated tables */
|
|
Boolean canReduce; /* True if this rule is ever reduced */
|
|
Boolean doesReduce; /* Reduce actions occur after optimization */
|
|
struct rule *nextlhs; /* Next rule with the same LHS */
|
|
struct rule *next; /* Next rule in the global list */
|
|
};
|
|
|
|
/* A configuration is a production rule of the grammar together with
|
|
** a mark (dot) showing how much of that rule has been processed so far.
|
|
** Configurations also contain a follow-set which is a list of terminal
|
|
** symbols which are allowed to immediately follow the end of the rule.
|
|
** Every configuration is recorded as an instance of the following: */
|
|
enum cfgstatus {
|
|
COMPLETE,
|
|
INCOMPLETE
|
|
};
|
|
struct config {
|
|
struct rule *rp; /* The rule upon which the configuration is based */
|
|
int dot; /* The parse point */
|
|
char *fws; /* Follow-set for this configuration only */
|
|
struct plink *fplp; /* Follow-set forward propagation links */
|
|
struct plink *bplp; /* Follow-set backwards propagation links */
|
|
struct state *stp; /* Pointer to state which contains this */
|
|
enum cfgstatus status; /* used during followset and shift computations */
|
|
struct config *next; /* Next configuration in the state */
|
|
struct config *bp; /* The next basis configuration */
|
|
};
|
|
|
|
enum e_action {
|
|
SHIFT,
|
|
ACCEPT,
|
|
REDUCE,
|
|
ERROR,
|
|
SSCONFLICT, /* A shift/shift conflict */
|
|
SRCONFLICT, /* Was a reduce, but part of a conflict */
|
|
RRCONFLICT, /* Was a reduce, but part of a conflict */
|
|
SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
|
|
RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
|
|
NOT_USED, /* Deleted by compression */
|
|
SHIFTREDUCE /* Shift first, then reduce */
|
|
};
|
|
|
|
/* Every shift or reduce operation is stored as one of the following */
|
|
struct action {
|
|
struct symbol *sp; /* The look-ahead symbol */
|
|
enum e_action type;
|
|
union {
|
|
struct state *stp; /* The new state, if a shift */
|
|
struct rule *rp; /* The rule, if a reduce */
|
|
} x;
|
|
struct symbol *spOpt; /* SHIFTREDUCE optimization to this symbol */
|
|
struct action *next; /* Next action for this state */
|
|
struct action *collide; /* Next action with the same hash */
|
|
};
|
|
|
|
/* Each state of the generated parser's finite state machine
|
|
** is encoded as an instance of the following structure. */
|
|
struct state {
|
|
struct config *bp; /* The basis configurations for this state */
|
|
struct config *cfp; /* All configurations in this set */
|
|
int statenum; /* Sequential number for this state */
|
|
struct action *ap; /* List of actions for this state */
|
|
int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
|
|
int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
|
|
int iDfltReduce; /* Default action is to REDUCE by this rule */
|
|
struct rule *pDfltReduce;/* The default REDUCE rule. */
|
|
int autoReduce; /* True if this is an auto-reduce state */
|
|
};
|
|
#define NO_OFFSET (-2147483647)
|
|
|
|
/* A followset propagation link indicates that the contents of one
|
|
** configuration followset should be propagated to another whenever
|
|
** the first changes. */
|
|
struct plink {
|
|
struct config *cfp; /* The configuration to which linked */
|
|
struct plink *next; /* The next propagate link */
|
|
};
|
|
|
|
/* The state vector for the entire parser generator is recorded as
|
|
** follows. (LEMON uses no global variables and makes little use of
|
|
** static variables. Fields in the following structure can be thought
|
|
** of as begin global variables in the program.) */
|
|
struct lemon {
|
|
struct state **sorted; /* Table of states sorted by state number */
|
|
struct rule *rule; /* List of all rules */
|
|
struct rule *startRule; /* First rule */
|
|
int nstate; /* Number of states */
|
|
int nxstate; /* nstate with tail degenerate states removed */
|
|
int nrule; /* Number of rules */
|
|
int nsymbol; /* Number of terminal and nonterminal symbols */
|
|
int nterminal; /* Number of terminal symbols */
|
|
struct symbol **symbols; /* Sorted array of pointers to symbols */
|
|
int errorcnt; /* Number of errors */
|
|
struct symbol *errsym; /* The error symbol */
|
|
struct symbol *wildcard; /* Token that matches anything */
|
|
char *name; /* Name of the generated parser */
|
|
char *arg; /* Declaration of the 3th argument to parser */
|
|
char *tokentype; /* Type of terminal symbols in the parser stack */
|
|
char *vartype; /* The default type of non-terminal symbols */
|
|
char *start; /* Name of the start symbol for the grammar */
|
|
char *stacksize; /* Size of the parser stack */
|
|
char *include; /* Code to put at the start of the C file */
|
|
char *error; /* Code to execute when an error is seen */
|
|
char *overflow; /* Code to execute on a stack overflow */
|
|
char *failure; /* Code to execute on parser failure */
|
|
char *accept; /* Code to execute when the parser excepts */
|
|
char *extracode; /* Code appended to the generated file */
|
|
char *tokendest; /* Code to execute to destroy token data */
|
|
char *vardest; /* Code for the default non-terminal destructor */
|
|
char *filename; /* Name of the input file */
|
|
char *outname; /* Name of the current output file */
|
|
char *tokenprefix; /* A prefix added to token names in the .h file */
|
|
int nconflict; /* Number of parsing conflicts */
|
|
int nactiontab; /* Number of entries in the yy_action[] table */
|
|
int tablesize; /* Total table size of all tables in bytes */
|
|
int basisflag; /* Print only basis configurations */
|
|
int has_fallback; /* True if any %fallback is seen in the grammar */
|
|
int nolinenosflag; /* True if #line statements should not be printed */
|
|
char *argv0; /* Name of the program */
|
|
};
|
|
|
|
#define MemoryCheck(X) if((X)==0){ \
|
|
extern void memory_error(); \
|
|
memory_error(); \
|
|
}
|
|
|
|
/**************** From the file "table.h" *********************************/
|
|
/*
|
|
** All code in this file has been automatically generated
|
|
** from a specification in the file
|
|
** "table.q"
|
|
** by the associative array code building program "aagen".
|
|
** Do not edit this file! Instead, edit the specification
|
|
** file, then rerun aagen.
|
|
*/
|
|
/*
|
|
** Code for processing tables in the LEMON parser generator.
|
|
*/
|
|
/* Routines for handling a strings */
|
|
|
|
const char *Strsafe(const char *);
|
|
|
|
void Strsafe_init(void);
|
|
int Strsafe_insert(const char *);
|
|
const char *Strsafe_find(const char *);
|
|
|
|
/* Routines for handling symbols of the grammar */
|
|
|
|
struct symbol *Symbol_new(const char *);
|
|
int Symbolcmpp(const void *, const void *);
|
|
void Symbol_init(void);
|
|
int Symbol_insert(struct symbol *, const char *);
|
|
struct symbol *Symbol_find(const char *);
|
|
struct symbol *Symbol_Nth(int);
|
|
int Symbol_count(void);
|
|
struct symbol **Symbol_arrayof(void);
|
|
|
|
/* Routines to manage the state table */
|
|
|
|
int Configcmp(const char *, const char *);
|
|
struct state *State_new(void);
|
|
void State_init(void);
|
|
int State_insert(struct state *, struct config *);
|
|
struct state *State_find(struct config *);
|
|
struct state **State_arrayof(/* */);
|
|
|
|
/* Routines used for efficiency in Configlist_add */
|
|
|
|
void Configtable_init(void);
|
|
int Configtable_insert(struct config *);
|
|
struct config *Configtable_find(struct config *);
|
|
void Configtable_clear(int(*)(struct config *));
|
|
|
|
/****************** From the file "action.c" *******************************/
|
|
/*
|
|
** Routines processing parser actions in the LEMON parser generator.
|
|
*/
|
|
|
|
/* Allocate a new parser action */
|
|
static struct action *Action_new(void){
|
|
static struct action *freelist = 0;
|
|
struct action *newaction;
|
|
|
|
if( freelist==0 ){
|
|
int i;
|
|
int amt = 100;
|
|
freelist = (struct action *)calloc(amt, sizeof(struct action));
|
|
if( freelist==0 ){
|
|
fprintf(stderr,"Unable to allocate memory for a new parser action.");
|
|
exit(1);
|
|
}
|
|
for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
|
|
freelist[amt-1].next = 0;
|
|
}
|
|
newaction = freelist;
|
|
freelist = freelist->next;
|
|
return newaction;
|
|
}
|
|
|
|
/* Compare two actions for sorting purposes. Return negative, zero, or
|
|
** positive if the first action is less than, equal to, or greater than
|
|
** the first
|
|
*/
|
|
static int actioncmp(
|
|
struct action *ap1,
|
|
struct action *ap2
|
|
){
|
|
int rc;
|
|
rc = ap1->sp->index - ap2->sp->index;
|
|
if( rc==0 ){
|
|
rc = (int)ap1->type - (int)ap2->type;
|
|
}
|
|
if( rc==0 && (ap1->type==REDUCE || ap1->type==SHIFTREDUCE) ){
|
|
rc = ap1->x.rp->index - ap2->x.rp->index;
|
|
}
|
|
if( rc==0 ){
|
|
rc = (int) (ap2 - ap1);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Sort parser actions */
|
|
static struct action *Action_sort(
|
|
struct action *ap
|
|
){
|
|
ap = (struct action *)msort((char *)ap,(char **)&ap->next,
|
|
(int(*)(const char*,const char*))actioncmp);
|
|
return ap;
|
|
}
|
|
|
|
void Action_add(
|
|
struct action **app,
|
|
enum e_action type,
|
|
struct symbol *sp,
|
|
char *arg
|
|
){
|
|
struct action *newaction;
|
|
newaction = Action_new();
|
|
newaction->next = *app;
|
|
*app = newaction;
|
|
newaction->type = type;
|
|
newaction->sp = sp;
|
|
newaction->spOpt = 0;
|
|
if( type==SHIFT ){
|
|
newaction->x.stp = (struct state *)arg;
|
|
}else{
|
|
newaction->x.rp = (struct rule *)arg;
|
|
}
|
|
}
|
|
/********************** New code to implement the "acttab" module ***********/
|
|
/*
|
|
** This module implements routines use to construct the yy_action[] table.
|
|
*/
|
|
|
|
/*
|
|
** The state of the yy_action table under construction is an instance of
|
|
** the following structure.
|
|
**
|
|
** The yy_action table maps the pair (state_number, lookahead) into an
|
|
** action_number. The table is an array of integers pairs. The state_number
|
|
** determines an initial offset into the yy_action array. The lookahead
|
|
** value is then added to this initial offset to get an index X into the
|
|
** yy_action array. If the aAction[X].lookahead equals the value of the
|
|
** of the lookahead input, then the value of the action_number output is
|
|
** aAction[X].action. If the lookaheads do not match then the
|
|
** default action for the state_number is returned.
|
|
**
|
|
** All actions associated with a single state_number are first entered
|
|
** into aLookahead[] using multiple calls to acttab_action(). Then the
|
|
** actions for that single state_number are placed into the aAction[]
|
|
** array with a single call to acttab_insert(). The acttab_insert() call
|
|
** also resets the aLookahead[] array in preparation for the next
|
|
** state number.
|
|
*/
|
|
struct lookahead_action {
|
|
int lookahead; /* Value of the lookahead token */
|
|
int action; /* Action to take on the given lookahead */
|
|
};
|
|
typedef struct acttab acttab;
|
|
struct acttab {
|
|
int nAction; /* Number of used slots in aAction[] */
|
|
int nActionAlloc; /* Slots allocated for aAction[] */
|
|
struct lookahead_action
|
|
*aAction, /* The yy_action[] table under construction */
|
|
*aLookahead; /* A single new transaction set */
|
|
int mnLookahead; /* Minimum aLookahead[].lookahead */
|
|
int mnAction; /* Action associated with mnLookahead */
|
|
int mxLookahead; /* Maximum aLookahead[].lookahead */
|
|
int nLookahead; /* Used slots in aLookahead[] */
|
|
int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
|
|
};
|
|
|
|
/* Return the number of entries in the yy_action table */
|
|
#define acttab_size(X) ((X)->nAction)
|
|
|
|
/* The value for the N-th entry in yy_action */
|
|
#define acttab_yyaction(X,N) ((X)->aAction[N].action)
|
|
|
|
/* The value for the N-th entry in yy_lookahead */
|
|
#define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
|
|
|
|
/* Free all memory associated with the given acttab */
|
|
void acttab_free(acttab *p){
|
|
free( p->aAction );
|
|
free( p->aLookahead );
|
|
free( p );
|
|
}
|
|
|
|
/* Allocate a new acttab structure */
|
|
acttab *acttab_alloc(void){
|
|
acttab *p = (acttab *) calloc( 1, sizeof(*p) );
|
|
if( p==0 ){
|
|
fprintf(stderr,"Unable to allocate memory for a new acttab.");
|
|
exit(1);
|
|
}
|
|
memset(p, 0, sizeof(*p));
|
|
return p;
|
|
}
|
|
|
|
/* Add a new action to the current transaction set.
|
|
**
|
|
** This routine is called once for each lookahead for a particular
|
|
** state.
|
|
*/
|
|
void acttab_action(acttab *p, int lookahead, int action){
|
|
if( p->nLookahead>=p->nLookaheadAlloc ){
|
|
p->nLookaheadAlloc += 25;
|
|
p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
|
|
sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
|
|
if( p->aLookahead==0 ){
|
|
fprintf(stderr,"malloc failed\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
if( p->nLookahead==0 ){
|
|
p->mxLookahead = lookahead;
|
|
p->mnLookahead = lookahead;
|
|
p->mnAction = action;
|
|
}else{
|
|
if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
|
|
if( p->mnLookahead>lookahead ){
|
|
p->mnLookahead = lookahead;
|
|
p->mnAction = action;
|
|
}
|
|
}
|
|
p->aLookahead[p->nLookahead].lookahead = lookahead;
|
|
p->aLookahead[p->nLookahead].action = action;
|
|
p->nLookahead++;
|
|
}
|
|
|
|
/*
|
|
** Add the transaction set built up with prior calls to acttab_action()
|
|
** into the current action table. Then reset the transaction set back
|
|
** to an empty set in preparation for a new round of acttab_action() calls.
|
|
**
|
|
** Return the offset into the action table of the new transaction.
|
|
*/
|
|
int acttab_insert(acttab *p){
|
|
int i, j, k, n;
|
|
assert( p->nLookahead>0 );
|
|
|
|
/* Make sure we have enough space to hold the expanded action table
|
|
** in the worst case. The worst case occurs if the transaction set
|
|
** must be appended to the current action table
|
|
*/
|
|
n = p->mxLookahead + 1;
|
|
if( p->nAction + n >= p->nActionAlloc ){
|
|
int oldAlloc = p->nActionAlloc;
|
|
p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
|
|
p->aAction = (struct lookahead_action *) realloc( p->aAction,
|
|
sizeof(p->aAction[0])*p->nActionAlloc);
|
|
if( p->aAction==0 ){
|
|
fprintf(stderr,"malloc failed\n");
|
|
exit(1);
|
|
}
|
|
for(i=oldAlloc; i<p->nActionAlloc; i++){
|
|
p->aAction[i].lookahead = -1;
|
|
p->aAction[i].action = -1;
|
|
}
|
|
}
|
|
|
|
/* Scan the existing action table looking for an offset that is a
|
|
** duplicate of the current transaction set. Fall out of the loop
|
|
** if and when the duplicate is found.
|
|
**
|
|
** i is the index in p->aAction[] where p->mnLookahead is inserted.
|
|
*/
|
|
for(i=p->nAction-1; i>=0; i--){
|
|
if( p->aAction[i].lookahead==p->mnLookahead ){
|
|
/* All lookaheads and actions in the aLookahead[] transaction
|
|
** must match against the candidate aAction[i] entry. */
|
|
if( p->aAction[i].action!=p->mnAction ) continue;
|
|
for(j=0; j<p->nLookahead; j++){
|
|
k = p->aLookahead[j].lookahead - p->mnLookahead + i;
|
|
if( k<0 || k>=p->nAction ) break;
|
|
if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
|
|
if( p->aLookahead[j].action!=p->aAction[k].action ) break;
|
|
}
|
|
if( j<p->nLookahead ) continue;
|
|
|
|
/* No possible lookahead value that is not in the aLookahead[]
|
|
** transaction is allowed to match aAction[i] */
|
|
n = 0;
|
|
for(j=0; j<p->nAction; j++){
|
|
if( p->aAction[j].lookahead<0 ) continue;
|
|
if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
|
|
}
|
|
if( n==p->nLookahead ){
|
|
break; /* An exact match is found at offset i */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If no existing offsets exactly match the current transaction, find an
|
|
** an empty offset in the aAction[] table in which we can add the
|
|
** aLookahead[] transaction.
|
|
*/
|
|
if( i<0 ){
|
|
/* Look for holes in the aAction[] table that fit the current
|
|
** aLookahead[] transaction. Leave i set to the offset of the hole.
|
|
** If no holes are found, i is left at p->nAction, which means the
|
|
** transaction will be appended. */
|
|
for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){
|
|
if( p->aAction[i].lookahead<0 ){
|
|
for(j=0; j<p->nLookahead; j++){
|
|
k = p->aLookahead[j].lookahead - p->mnLookahead + i;
|
|
if( k<0 ) break;
|
|
if( p->aAction[k].lookahead>=0 ) break;
|
|
}
|
|
if( j<p->nLookahead ) continue;
|
|
for(j=0; j<p->nAction; j++){
|
|
if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
|
|
}
|
|
if( j==p->nAction ){
|
|
break; /* Fits in empty slots */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Insert transaction set at index i. */
|
|
for(j=0; j<p->nLookahead; j++){
|
|
k = p->aLookahead[j].lookahead - p->mnLookahead + i;
|
|
p->aAction[k] = p->aLookahead[j];
|
|
if( k>=p->nAction ) p->nAction = k+1;
|
|
}
|
|
p->nLookahead = 0;
|
|
|
|
/* Return the offset that is added to the lookahead in order to get the
|
|
** index into yy_action of the action */
|
|
return i - p->mnLookahead;
|
|
}
|
|
|
|
/********************** From the file "build.c" *****************************/
|
|
/*
|
|
** Routines to construction the finite state machine for the LEMON
|
|
** parser generator.
|
|
*/
|
|
|
|
/* Find a precedence symbol of every rule in the grammar.
|
|
**
|
|
** Those rules which have a precedence symbol coded in the input
|
|
** grammar using the "[symbol]" construct will already have the
|
|
** rp->precsym field filled. Other rules take as their precedence
|
|
** symbol the first RHS symbol with a defined precedence. If there
|
|
** are not RHS symbols with a defined precedence, the precedence
|
|
** symbol field is left blank.
|
|
*/
|
|
void FindRulePrecedences(struct lemon *xp)
|
|
{
|
|
struct rule *rp;
|
|
for(rp=xp->rule; rp; rp=rp->next){
|
|
if( rp->precsym==0 ){
|
|
int i, j;
|
|
for(i=0; i<rp->nrhs && rp->precsym==0; i++){
|
|
struct symbol *sp = rp->rhs[i];
|
|
if( sp->type==MULTITERMINAL ){
|
|
for(j=0; j<sp->nsubsym; j++){
|
|
if( sp->subsym[j]->prec>=0 ){
|
|
rp->precsym = sp->subsym[j];
|
|
break;
|
|
}
|
|
}
|
|
}else if( sp->prec>=0 ){
|
|
rp->precsym = rp->rhs[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Find all nonterminals which will generate the empty string.
|
|
** Then go back and compute the first sets of every nonterminal.
|
|
** The first set is the set of all terminal symbols which can begin
|
|
** a string generated by that nonterminal.
|
|
*/
|
|
void FindFirstSets(struct lemon *lemp)
|
|
{
|
|
int i, j;
|
|
struct rule *rp;
|
|
int progress;
|
|
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
lemp->symbols[i]->lambda = LEMON_FALSE;
|
|
}
|
|
for(i=lemp->nterminal; i<lemp->nsymbol; i++){
|
|
lemp->symbols[i]->firstset = SetNew();
|
|
}
|
|
|
|
/* First compute all lambdas */
|
|
do{
|
|
progress = 0;
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
if( rp->lhs->lambda ) continue;
|
|
for(i=0; i<rp->nrhs; i++){
|
|
struct symbol *sp = rp->rhs[i];
|
|
assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE );
|
|
if( sp->lambda==LEMON_FALSE ) break;
|
|
}
|
|
if( i==rp->nrhs ){
|
|
rp->lhs->lambda = LEMON_TRUE;
|
|
progress = 1;
|
|
}
|
|
}
|
|
}while( progress );
|
|
|
|
/* Now compute all first sets */
|
|
do{
|
|
struct symbol *s1, *s2;
|
|
progress = 0;
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
s1 = rp->lhs;
|
|
for(i=0; i<rp->nrhs; i++){
|
|
s2 = rp->rhs[i];
|
|
if( s2->type==TERMINAL ){
|
|
progress += SetAdd(s1->firstset,s2->index);
|
|
break;
|
|
}else if( s2->type==MULTITERMINAL ){
|
|
for(j=0; j<s2->nsubsym; j++){
|
|
progress += SetAdd(s1->firstset,s2->subsym[j]->index);
|
|
}
|
|
break;
|
|
}else if( s1==s2 ){
|
|
if( s1->lambda==LEMON_FALSE ) break;
|
|
}else{
|
|
progress += SetUnion(s1->firstset,s2->firstset);
|
|
if( s2->lambda==LEMON_FALSE ) break;
|
|
}
|
|
}
|
|
}
|
|
}while( progress );
|
|
return;
|
|
}
|
|
|
|
/* Compute all LR(0) states for the grammar. Links
|
|
** are added to between some states so that the LR(1) follow sets
|
|
** can be computed later.
|
|
*/
|
|
PRIVATE struct state *getstate(struct lemon *); /* forward reference */
|
|
void FindStates(struct lemon *lemp)
|
|
{
|
|
struct symbol *sp;
|
|
struct rule *rp;
|
|
|
|
Configlist_init();
|
|
|
|
/* Find the start symbol */
|
|
if( lemp->start ){
|
|
sp = Symbol_find(lemp->start);
|
|
if( sp==0 ){
|
|
ErrorMsg(lemp->filename,0,
|
|
"The specified start symbol \"%s\" is not \
|
|
in a nonterminal of the grammar. \"%s\" will be used as the start \
|
|
symbol instead.",lemp->start,lemp->startRule->lhs->name);
|
|
lemp->errorcnt++;
|
|
sp = lemp->startRule->lhs;
|
|
}
|
|
}else{
|
|
sp = lemp->startRule->lhs;
|
|
}
|
|
|
|
/* Make sure the start symbol doesn't occur on the right-hand side of
|
|
** any rule. Report an error if it does. (YACC would generate a new
|
|
** start symbol in this case.) */
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
int i;
|
|
for(i=0; i<rp->nrhs; i++){
|
|
if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */
|
|
ErrorMsg(lemp->filename,0,
|
|
"The start symbol \"%s\" occurs on the \
|
|
right-hand side of a rule. This will result in a parser which \
|
|
does not work properly.",sp->name);
|
|
lemp->errorcnt++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The basis configuration set for the first state
|
|
** is all rules which have the start symbol as their
|
|
** left-hand side */
|
|
for(rp=sp->rule; rp; rp=rp->nextlhs){
|
|
struct config *newcfp;
|
|
rp->lhsStart = 1;
|
|
newcfp = Configlist_addbasis(rp,0);
|
|
SetAdd(newcfp->fws,0);
|
|
}
|
|
|
|
/* Compute the first state. All other states will be
|
|
** computed automatically during the computation of the first one.
|
|
** The returned pointer to the first state is not used. */
|
|
(void)getstate(lemp);
|
|
return;
|
|
}
|
|
|
|
/* Return a pointer to a state which is described by the configuration
|
|
** list which has been built from calls to Configlist_add.
|
|
*/
|
|
PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
|
|
PRIVATE struct state *getstate(struct lemon *lemp)
|
|
{
|
|
struct config *cfp, *bp;
|
|
struct state *stp;
|
|
|
|
/* Extract the sorted basis of the new state. The basis was constructed
|
|
** by prior calls to "Configlist_addbasis()". */
|
|
Configlist_sortbasis();
|
|
bp = Configlist_basis();
|
|
|
|
/* Get a state with the same basis */
|
|
stp = State_find(bp);
|
|
if( stp ){
|
|
/* A state with the same basis already exists! Copy all the follow-set
|
|
** propagation links from the state under construction into the
|
|
** preexisting state, then return a pointer to the preexisting state */
|
|
struct config *x, *y;
|
|
for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
|
|
Plink_copy(&y->bplp,x->bplp);
|
|
Plink_delete(x->fplp);
|
|
x->fplp = x->bplp = 0;
|
|
}
|
|
cfp = Configlist_return();
|
|
Configlist_eat(cfp);
|
|
}else{
|
|
/* This really is a new state. Construct all the details */
|
|
Configlist_closure(lemp); /* Compute the configuration closure */
|
|
Configlist_sort(); /* Sort the configuration closure */
|
|
cfp = Configlist_return(); /* Get a pointer to the config list */
|
|
stp = State_new(); /* A new state structure */
|
|
MemoryCheck(stp);
|
|
stp->bp = bp; /* Remember the configuration basis */
|
|
stp->cfp = cfp; /* Remember the configuration closure */
|
|
stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
|
|
stp->ap = 0; /* No actions, yet. */
|
|
State_insert(stp,stp->bp); /* Add to the state table */
|
|
buildshifts(lemp,stp); /* Recursively compute successor states */
|
|
}
|
|
return stp;
|
|
}
|
|
|
|
/*
|
|
** Return true if two symbols are the same.
|
|
*/
|
|
int same_symbol(struct symbol *a, struct symbol *b)
|
|
{
|
|
int i;
|
|
if( a==b ) return 1;
|
|
if( a->type!=MULTITERMINAL ) return 0;
|
|
if( b->type!=MULTITERMINAL ) return 0;
|
|
if( a->nsubsym!=b->nsubsym ) return 0;
|
|
for(i=0; i<a->nsubsym; i++){
|
|
if( a->subsym[i]!=b->subsym[i] ) return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Construct all successor states to the given state. A "successor"
|
|
** state is any state which can be reached by a shift action.
|
|
*/
|
|
PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
|
|
{
|
|
struct config *cfp; /* For looping thru the config closure of "stp" */
|
|
struct config *bcfp; /* For the inner loop on config closure of "stp" */
|
|
struct config *newcfg; /* */
|
|
struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
|
|
struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
|
|
struct state *newstp; /* A pointer to a successor state */
|
|
|
|
/* Each configuration becomes complete after it contibutes to a successor
|
|
** state. Initially, all configurations are incomplete */
|
|
for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
|
|
|
|
/* Loop through all configurations of the state "stp" */
|
|
for(cfp=stp->cfp; cfp; cfp=cfp->next){
|
|
if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */
|
|
if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */
|
|
Configlist_reset(); /* Reset the new config set */
|
|
sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
|
|
|
|
/* For every configuration in the state "stp" which has the symbol "sp"
|
|
** following its dot, add the same configuration to the basis set under
|
|
** construction but with the dot shifted one symbol to the right. */
|
|
for(bcfp=cfp; bcfp; bcfp=bcfp->next){
|
|
if( bcfp->status==COMPLETE ) continue; /* Already used */
|
|
if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
|
|
bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
|
|
if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */
|
|
bcfp->status = COMPLETE; /* Mark this config as used */
|
|
newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
|
|
Plink_add(&newcfg->bplp,bcfp);
|
|
}
|
|
|
|
/* Get a pointer to the state described by the basis configuration set
|
|
** constructed in the preceding loop */
|
|
newstp = getstate(lemp);
|
|
|
|
/* The state "newstp" is reached from the state "stp" by a shift action
|
|
** on the symbol "sp" */
|
|
if( sp->type==MULTITERMINAL ){
|
|
int i;
|
|
for(i=0; i<sp->nsubsym; i++){
|
|
Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
|
|
}
|
|
}else{
|
|
Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Construct the propagation links
|
|
*/
|
|
void FindLinks(struct lemon *lemp)
|
|
{
|
|
int i;
|
|
struct config *cfp, *other;
|
|
struct state *stp;
|
|
struct plink *plp;
|
|
|
|
/* Housekeeping detail:
|
|
** Add to every propagate link a pointer back to the state to
|
|
** which the link is attached. */
|
|
for(i=0; i<lemp->nstate; i++){
|
|
stp = lemp->sorted[i];
|
|
for(cfp=stp->cfp; cfp; cfp=cfp->next){
|
|
cfp->stp = stp;
|
|
}
|
|
}
|
|
|
|
/* Convert all backlinks into forward links. Only the forward
|
|
** links are used in the follow-set computation. */
|
|
for(i=0; i<lemp->nstate; i++){
|
|
stp = lemp->sorted[i];
|
|
for(cfp=stp->cfp; cfp; cfp=cfp->next){
|
|
for(plp=cfp->bplp; plp; plp=plp->next){
|
|
other = plp->cfp;
|
|
Plink_add(&other->fplp,cfp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compute all followsets.
|
|
**
|
|
** A followset is the set of all symbols which can come immediately
|
|
** after a configuration.
|
|
*/
|
|
void FindFollowSets(struct lemon *lemp)
|
|
{
|
|
int i;
|
|
struct config *cfp;
|
|
struct plink *plp;
|
|
int progress;
|
|
int change;
|
|
|
|
for(i=0; i<lemp->nstate; i++){
|
|
for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
|
|
cfp->status = INCOMPLETE;
|
|
}
|
|
}
|
|
|
|
do{
|
|
progress = 0;
|
|
for(i=0; i<lemp->nstate; i++){
|
|
for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
|
|
if( cfp->status==COMPLETE ) continue;
|
|
for(plp=cfp->fplp; plp; plp=plp->next){
|
|
change = SetUnion(plp->cfp->fws,cfp->fws);
|
|
if( change ){
|
|
plp->cfp->status = INCOMPLETE;
|
|
progress = 1;
|
|
}
|
|
}
|
|
cfp->status = COMPLETE;
|
|
}
|
|
}
|
|
}while( progress );
|
|
}
|
|
|
|
static int resolve_conflict(struct action *,struct action *);
|
|
|
|
/* Compute the reduce actions, and resolve conflicts.
|
|
*/
|
|
void FindActions(struct lemon *lemp)
|
|
{
|
|
int i,j;
|
|
struct config *cfp;
|
|
struct state *stp;
|
|
struct symbol *sp;
|
|
struct rule *rp;
|
|
|
|
/* Add all of the reduce actions
|
|
** A reduce action is added for each element of the followset of
|
|
** a configuration which has its dot at the extreme right.
|
|
*/
|
|
for(i=0; i<lemp->nstate; i++){ /* Loop over all states */
|
|
stp = lemp->sorted[i];
|
|
for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */
|
|
if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */
|
|
for(j=0; j<lemp->nterminal; j++){
|
|
if( SetFind(cfp->fws,j) ){
|
|
/* Add a reduce action to the state "stp" which will reduce by the
|
|
** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
|
|
Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Add the accepting token */
|
|
if( lemp->start ){
|
|
sp = Symbol_find(lemp->start);
|
|
if( sp==0 ) sp = lemp->startRule->lhs;
|
|
}else{
|
|
sp = lemp->startRule->lhs;
|
|
}
|
|
/* Add to the first state (which is always the starting state of the
|
|
** finite state machine) an action to ACCEPT if the lookahead is the
|
|
** start nonterminal. */
|
|
Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
|
|
|
|
/* Resolve conflicts */
|
|
for(i=0; i<lemp->nstate; i++){
|
|
struct action *ap, *nap;
|
|
stp = lemp->sorted[i];
|
|
/* assert( stp->ap ); */
|
|
stp->ap = Action_sort(stp->ap);
|
|
for(ap=stp->ap; ap && ap->next; ap=ap->next){
|
|
for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
|
|
/* The two actions "ap" and "nap" have the same lookahead.
|
|
** Figure out which one should be used */
|
|
lemp->nconflict += resolve_conflict(ap,nap);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Report an error for each rule that can never be reduced. */
|
|
for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
|
|
for(i=0; i<lemp->nstate; i++){
|
|
struct action *ap;
|
|
for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
|
|
if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
|
|
}
|
|
}
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
if( rp->canReduce ) continue;
|
|
ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
|
|
lemp->errorcnt++;
|
|
}
|
|
}
|
|
|
|
/* Resolve a conflict between the two given actions. If the
|
|
** conflict can't be resolved, return non-zero.
|
|
**
|
|
** NO LONGER TRUE:
|
|
** To resolve a conflict, first look to see if either action
|
|
** is on an error rule. In that case, take the action which
|
|
** is not associated with the error rule. If neither or both
|
|
** actions are associated with an error rule, then try to
|
|
** use precedence to resolve the conflict.
|
|
**
|
|
** If either action is a SHIFT, then it must be apx. This
|
|
** function won't work if apx->type==REDUCE and apy->type==SHIFT.
|
|
*/
|
|
static int resolve_conflict(
|
|
struct action *apx,
|
|
struct action *apy
|
|
){
|
|
struct symbol *spx, *spy;
|
|
int errcnt = 0;
|
|
assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */
|
|
if( apx->type==SHIFT && apy->type==SHIFT ){
|
|
apy->type = SSCONFLICT;
|
|
errcnt++;
|
|
}
|
|
if( apx->type==SHIFT && apy->type==REDUCE ){
|
|
spx = apx->sp;
|
|
spy = apy->x.rp->precsym;
|
|
if( spy==0 || spx->prec<0 || spy->prec<0 ){
|
|
/* Not enough precedence information. */
|
|
apy->type = SRCONFLICT;
|
|
errcnt++;
|
|
}else if( spx->prec>spy->prec ){ /* higher precedence wins */
|
|
apy->type = RD_RESOLVED;
|
|
}else if( spx->prec<spy->prec ){
|
|
apx->type = SH_RESOLVED;
|
|
}else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
|
|
apy->type = RD_RESOLVED; /* associativity */
|
|
}else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */
|
|
apx->type = SH_RESOLVED;
|
|
}else{
|
|
assert( spx->prec==spy->prec && spx->assoc==NONE );
|
|
apx->type = ERROR;
|
|
}
|
|
}else if( apx->type==REDUCE && apy->type==REDUCE ){
|
|
spx = apx->x.rp->precsym;
|
|
spy = apy->x.rp->precsym;
|
|
if( spx==0 || spy==0 || spx->prec<0 ||
|
|
spy->prec<0 || spx->prec==spy->prec ){
|
|
apy->type = RRCONFLICT;
|
|
errcnt++;
|
|
}else if( spx->prec>spy->prec ){
|
|
apy->type = RD_RESOLVED;
|
|
}else if( spx->prec<spy->prec ){
|
|
apx->type = RD_RESOLVED;
|
|
}
|
|
}else{
|
|
assert(
|
|
apx->type==SH_RESOLVED ||
|
|
apx->type==RD_RESOLVED ||
|
|
apx->type==SSCONFLICT ||
|
|
apx->type==SRCONFLICT ||
|
|
apx->type==RRCONFLICT ||
|
|
apy->type==SH_RESOLVED ||
|
|
apy->type==RD_RESOLVED ||
|
|
apy->type==SSCONFLICT ||
|
|
apy->type==SRCONFLICT ||
|
|
apy->type==RRCONFLICT
|
|
);
|
|
/* The REDUCE/SHIFT case cannot happen because SHIFTs come before
|
|
** REDUCEs on the list. If we reach this point it must be because
|
|
** the parser conflict had already been resolved. */
|
|
}
|
|
return errcnt;
|
|
}
|
|
/********************* From the file "configlist.c" *************************/
|
|
/*
|
|
** Routines to processing a configuration list and building a state
|
|
** in the LEMON parser generator.
|
|
*/
|
|
|
|
static struct config *freelist = 0; /* List of free configurations */
|
|
static struct config *current = 0; /* Top of list of configurations */
|
|
static struct config **currentend = 0; /* Last on list of configs */
|
|
static struct config *basis = 0; /* Top of list of basis configs */
|
|
static struct config **basisend = 0; /* End of list of basis configs */
|
|
|
|
/* Return a pointer to a new configuration */
|
|
PRIVATE struct config *newconfig(){
|
|
struct config *newcfg;
|
|
if( freelist==0 ){
|
|
int i;
|
|
int amt = 3;
|
|
freelist = (struct config *)calloc( amt, sizeof(struct config) );
|
|
if( freelist==0 ){
|
|
fprintf(stderr,"Unable to allocate memory for a new configuration.");
|
|
exit(1);
|
|
}
|
|
for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
|
|
freelist[amt-1].next = 0;
|
|
}
|
|
newcfg = freelist;
|
|
freelist = freelist->next;
|
|
return newcfg;
|
|
}
|
|
|
|
/* The configuration "old" is no longer used */
|
|
PRIVATE void deleteconfig(struct config *old)
|
|
{
|
|
old->next = freelist;
|
|
freelist = old;
|
|
}
|
|
|
|
/* Initialized the configuration list builder */
|
|
void Configlist_init(){
|
|
current = 0;
|
|
currentend = ¤t;
|
|
basis = 0;
|
|
basisend = &basis;
|
|
Configtable_init();
|
|
return;
|
|
}
|
|
|
|
/* Initialized the configuration list builder */
|
|
void Configlist_reset(){
|
|
current = 0;
|
|
currentend = ¤t;
|
|
basis = 0;
|
|
basisend = &basis;
|
|
Configtable_clear(0);
|
|
return;
|
|
}
|
|
|
|
/* Add another configuration to the configuration list */
|
|
struct config *Configlist_add(
|
|
struct rule *rp, /* The rule */
|
|
int dot /* Index into the RHS of the rule where the dot goes */
|
|
){
|
|
struct config *cfp, model;
|
|
|
|
assert( currentend!=0 );
|
|
model.rp = rp;
|
|
model.dot = dot;
|
|
cfp = Configtable_find(&model);
|
|
if( cfp==0 ){
|
|
cfp = newconfig();
|
|
cfp->rp = rp;
|
|
cfp->dot = dot;
|
|
cfp->fws = SetNew();
|
|
cfp->stp = 0;
|
|
cfp->fplp = cfp->bplp = 0;
|
|
cfp->next = 0;
|
|
cfp->bp = 0;
|
|
*currentend = cfp;
|
|
currentend = &cfp->next;
|
|
Configtable_insert(cfp);
|
|
}
|
|
return cfp;
|
|
}
|
|
|
|
/* Add a basis configuration to the configuration list */
|
|
struct config *Configlist_addbasis(struct rule *rp, int dot)
|
|
{
|
|
struct config *cfp, model;
|
|
|
|
assert( basisend!=0 );
|
|
assert( currentend!=0 );
|
|
model.rp = rp;
|
|
model.dot = dot;
|
|
cfp = Configtable_find(&model);
|
|
if( cfp==0 ){
|
|
cfp = newconfig();
|
|
cfp->rp = rp;
|
|
cfp->dot = dot;
|
|
cfp->fws = SetNew();
|
|
cfp->stp = 0;
|
|
cfp->fplp = cfp->bplp = 0;
|
|
cfp->next = 0;
|
|
cfp->bp = 0;
|
|
*currentend = cfp;
|
|
currentend = &cfp->next;
|
|
*basisend = cfp;
|
|
basisend = &cfp->bp;
|
|
Configtable_insert(cfp);
|
|
}
|
|
return cfp;
|
|
}
|
|
|
|
/* Compute the closure of the configuration list */
|
|
void Configlist_closure(struct lemon *lemp)
|
|
{
|
|
struct config *cfp, *newcfp;
|
|
struct rule *rp, *newrp;
|
|
struct symbol *sp, *xsp;
|
|
int i, dot;
|
|
|
|
assert( currentend!=0 );
|
|
for(cfp=current; cfp; cfp=cfp->next){
|
|
rp = cfp->rp;
|
|
dot = cfp->dot;
|
|
if( dot>=rp->nrhs ) continue;
|
|
sp = rp->rhs[dot];
|
|
if( sp->type==NONTERMINAL ){
|
|
if( sp->rule==0 && sp!=lemp->errsym ){
|
|
ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
|
|
sp->name);
|
|
lemp->errorcnt++;
|
|
}
|
|
for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
|
|
newcfp = Configlist_add(newrp,0);
|
|
for(i=dot+1; i<rp->nrhs; i++){
|
|
xsp = rp->rhs[i];
|
|
if( xsp->type==TERMINAL ){
|
|
SetAdd(newcfp->fws,xsp->index);
|
|
break;
|
|
}else if( xsp->type==MULTITERMINAL ){
|
|
int k;
|
|
for(k=0; k<xsp->nsubsym; k++){
|
|
SetAdd(newcfp->fws, xsp->subsym[k]->index);
|
|
}
|
|
break;
|
|
}else{
|
|
SetUnion(newcfp->fws,xsp->firstset);
|
|
if( xsp->lambda==LEMON_FALSE ) break;
|
|
}
|
|
}
|
|
if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Sort the configuration list */
|
|
void Configlist_sort(){
|
|
current = (struct config*)msort((char*)current,(char**)&(current->next),
|
|
Configcmp);
|
|
currentend = 0;
|
|
return;
|
|
}
|
|
|
|
/* Sort the basis configuration list */
|
|
void Configlist_sortbasis(){
|
|
basis = (struct config*)msort((char*)current,(char**)&(current->bp),
|
|
Configcmp);
|
|
basisend = 0;
|
|
return;
|
|
}
|
|
|
|
/* Return a pointer to the head of the configuration list and
|
|
** reset the list */
|
|
struct config *Configlist_return(){
|
|
struct config *old;
|
|
old = current;
|
|
current = 0;
|
|
currentend = 0;
|
|
return old;
|
|
}
|
|
|
|
/* Return a pointer to the head of the configuration list and
|
|
** reset the list */
|
|
struct config *Configlist_basis(){
|
|
struct config *old;
|
|
old = basis;
|
|
basis = 0;
|
|
basisend = 0;
|
|
return old;
|
|
}
|
|
|
|
/* Free all elements of the given configuration list */
|
|
void Configlist_eat(struct config *cfp)
|
|
{
|
|
struct config *nextcfp;
|
|
for(; cfp; cfp=nextcfp){
|
|
nextcfp = cfp->next;
|
|
assert( cfp->fplp==0 );
|
|
assert( cfp->bplp==0 );
|
|
if( cfp->fws ) SetFree(cfp->fws);
|
|
deleteconfig(cfp);
|
|
}
|
|
return;
|
|
}
|
|
/***************** From the file "error.c" *********************************/
|
|
/*
|
|
** Code for printing error message.
|
|
*/
|
|
|
|
void ErrorMsg(const char *filename, int lineno, const char *format, ...){
|
|
va_list ap;
|
|
fprintf(stderr, "%s:%d: ", filename, lineno);
|
|
va_start(ap, format);
|
|
vfprintf(stderr,format,ap);
|
|
va_end(ap);
|
|
fprintf(stderr, "\n");
|
|
}
|
|
/**************** From the file "main.c" ************************************/
|
|
/*
|
|
** Main program file for the LEMON parser generator.
|
|
*/
|
|
|
|
/* Report an out-of-memory condition and abort. This function
|
|
** is used mostly by the "MemoryCheck" macro in struct.h
|
|
*/
|
|
void memory_error(){
|
|
fprintf(stderr,"Out of memory. Aborting...\n");
|
|
exit(1);
|
|
}
|
|
|
|
static int nDefine = 0; /* Number of -D options on the command line */
|
|
static char **azDefine = 0; /* Name of the -D macros */
|
|
|
|
/* This routine is called with the argument to each -D command-line option.
|
|
** Add the macro defined to the azDefine array.
|
|
*/
|
|
static void handle_D_option(char *z){
|
|
char **paz;
|
|
nDefine++;
|
|
azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
|
|
if( azDefine==0 ){
|
|
fprintf(stderr,"out of memory\n");
|
|
exit(1);
|
|
}
|
|
paz = &azDefine[nDefine-1];
|
|
*paz = (char *) malloc( lemonStrlen(z)+1 );
|
|
if( *paz==0 ){
|
|
fprintf(stderr,"out of memory\n");
|
|
exit(1);
|
|
}
|
|
lemon_strcpy(*paz, z);
|
|
for(z=*paz; *z && *z!='='; z++){}
|
|
*z = 0;
|
|
}
|
|
|
|
static char *user_templatename = NULL;
|
|
static void handle_T_option(char *z){
|
|
user_templatename = (char *) malloc( lemonStrlen(z)+1 );
|
|
if( user_templatename==0 ){
|
|
memory_error();
|
|
}
|
|
lemon_strcpy(user_templatename, z);
|
|
}
|
|
|
|
/* Merge together to lists of rules ordered by rule.iRule */
|
|
static struct rule *Rule_merge(struct rule *pA, struct rule *pB){
|
|
struct rule *pFirst = 0;
|
|
struct rule **ppPrev = &pFirst;
|
|
while( pA && pB ){
|
|
if( pA->iRule<pB->iRule ){
|
|
*ppPrev = pA;
|
|
ppPrev = &pA->next;
|
|
pA = pA->next;
|
|
}else{
|
|
*ppPrev = pB;
|
|
ppPrev = &pB->next;
|
|
pB = pB->next;
|
|
}
|
|
}
|
|
if( pA ){
|
|
*ppPrev = pA;
|
|
}else{
|
|
*ppPrev = pB;
|
|
}
|
|
return pFirst;
|
|
}
|
|
|
|
/*
|
|
** Sort a list of rules in order of increasing iRule value
|
|
*/
|
|
static struct rule *Rule_sort(struct rule *rp){
|
|
int i;
|
|
struct rule *pNext;
|
|
struct rule *x[32];
|
|
memset(x, 0, sizeof(x));
|
|
while( rp ){
|
|
pNext = rp->next;
|
|
rp->next = 0;
|
|
for(i=0; i<sizeof(x)/sizeof(x[0]) && x[i]; i++){
|
|
rp = Rule_merge(x[i], rp);
|
|
x[i] = 0;
|
|
}
|
|
x[i] = rp;
|
|
rp = pNext;
|
|
}
|
|
rp = 0;
|
|
for(i=0; i<sizeof(x)/sizeof(x[0]); i++){
|
|
rp = Rule_merge(x[i], rp);
|
|
}
|
|
return rp;
|
|
}
|
|
|
|
/* forward reference */
|
|
static const char *minimum_size_type(int lwr, int upr, int *pnByte);
|
|
|
|
/* Print a single line of the "Parser Stats" output
|
|
*/
|
|
static void stats_line(const char *zLabel, int iValue){
|
|
int nLabel = lemonStrlen(zLabel);
|
|
printf(" %s%.*s %5d\n", zLabel,
|
|
35-nLabel, "................................",
|
|
iValue);
|
|
}
|
|
|
|
/* The main program. Parse the command line and do it... */
|
|
int main(int argc, char **argv)
|
|
{
|
|
static int version = 0;
|
|
static int rpflag = 0;
|
|
static int basisflag = 0;
|
|
static int compress = 0;
|
|
static int quiet = 0;
|
|
static int statistics = 0;
|
|
static int mhflag = 0;
|
|
static int nolinenosflag = 0;
|
|
static int noResort = 0;
|
|
static struct s_options options[] = {
|
|
{OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
|
|
{OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
|
|
//{OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
|
|
//{OPT_FSTR, "f", 0, "Ignored. (Placeholder for -f compiler options.)"},
|
|
{OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
|
|
//{OPT_FSTR, "I", 0, "Ignored. (Placeholder for '-I' compiler options.)"},
|
|
//{OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
|
|
{OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print \"// line ...\" statements."},
|
|
//{OPT_FSTR, "O", 0, "Ignored. (Placeholder for '-O' compiler options.)"},
|
|
{OPT_FLAG, "p", (char*)&showPrecedenceConflict,
|
|
"Show conflicts resolved by precedence rules"},
|
|
{OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
|
|
{OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"},
|
|
{OPT_FLAG, "s", (char*)&statistics,
|
|
"Print parser stats to standard output."},
|
|
{OPT_FLAG, "x", (char*)&version, "Print the version number."},
|
|
{OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."},
|
|
//{OPT_FSTR, "W", 0, "Ignored. (Placeholder for '-W' compiler options.)"},
|
|
{OPT_FLAG,0,0,0}
|
|
};
|
|
int i;
|
|
int exitcode;
|
|
struct lemon lem;
|
|
struct rule *rp;
|
|
|
|
OptInit(argv,options,stderr);
|
|
if( version ){
|
|
printf("Lemon version 1.0\n");
|
|
exit(0);
|
|
}
|
|
if( OptNArgs()!=1 ){
|
|
fprintf(stderr,"Exactly one filename argument is required.\n");
|
|
exit(1);
|
|
}
|
|
memset(&lem, 0, sizeof(lem));
|
|
lem.errorcnt = 0;
|
|
|
|
/* Initialize the machine */
|
|
Strsafe_init();
|
|
Symbol_init();
|
|
State_init();
|
|
lem.argv0 = argv[0];
|
|
lem.filename = OptArg(0);
|
|
lem.basisflag = basisflag;
|
|
lem.nolinenosflag = nolinenosflag;
|
|
Symbol_new("$");
|
|
lem.errsym = Symbol_new("error");
|
|
lem.errsym->useCnt = 0;
|
|
|
|
/* Parse the input file */
|
|
Parse(&lem);
|
|
if( lem.errorcnt ) exit(lem.errorcnt);
|
|
if( lem.nrule==0 ){
|
|
fprintf(stderr,"Empty grammar.\n");
|
|
exit(1);
|
|
}
|
|
|
|
/* Count and index the symbols of the grammar */
|
|
Symbol_new("{default}");
|
|
lem.nsymbol = Symbol_count();
|
|
lem.symbols = Symbol_arrayof();
|
|
for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
|
|
qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp);
|
|
for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
|
|
while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; }
|
|
assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 );
|
|
lem.nsymbol = i - 1;
|
|
for(i=1; ISUPPER(lem.symbols[i]->name[0]); i++);
|
|
lem.nterminal = i;
|
|
|
|
/* Assign sequential rule numbers. Start with 0. Put rules that have no
|
|
** reduce action C-code associated with them last, so that the switch()
|
|
** statement that selects reduction actions will have a smaller jump table.
|
|
*/
|
|
for(i=0, rp=lem.rule; rp; rp=rp->next){
|
|
rp->iRule = rp->code ? i++ : -1;
|
|
}
|
|
for(rp=lem.rule; rp; rp=rp->next){
|
|
if( rp->iRule<0 ) rp->iRule = i++;
|
|
}
|
|
lem.startRule = lem.rule;
|
|
lem.rule = Rule_sort(lem.rule);
|
|
|
|
/* Generate a reprint of the grammar, if requested on the command line */
|
|
if( rpflag ){
|
|
Reprint(&lem);
|
|
}else{
|
|
/* Initialize the size for all follow and first sets */
|
|
SetSize(lem.nterminal+1);
|
|
|
|
/* Find the precedence for every production rule (that has one) */
|
|
FindRulePrecedences(&lem);
|
|
|
|
/* Compute the lambda-nonterminals and the first-sets for every
|
|
** nonterminal */
|
|
FindFirstSets(&lem);
|
|
|
|
/* Compute all LR(0) states. Also record follow-set propagation
|
|
** links so that the follow-set can be computed later */
|
|
lem.nstate = 0;
|
|
FindStates(&lem);
|
|
lem.sorted = State_arrayof();
|
|
|
|
/* Tie up loose ends on the propagation links */
|
|
FindLinks(&lem);
|
|
|
|
/* Compute the follow set of every reducible configuration */
|
|
FindFollowSets(&lem);
|
|
|
|
/* Compute the action tables */
|
|
FindActions(&lem);
|
|
|
|
/* Compress the action tables */
|
|
if( compress==0 ) CompressTables(&lem);
|
|
|
|
/* Reorder and renumber the states so that states with fewer choices
|
|
** occur at the end. This is an optimization that helps make the
|
|
** generated parser tables smaller. */
|
|
if( noResort==0 ) ResortStates(&lem);
|
|
|
|
/* Generate a report of the parser generated. (the "y.output" file) */
|
|
if( !quiet ) ReportOutput(&lem);
|
|
|
|
/* Generate the source code for the parser */
|
|
ReportTable(&lem, mhflag);
|
|
|
|
/* Produce a header file for use by the scanner. (This step is
|
|
** omitted if the "-m" option is used because makeheaders will
|
|
** generate the file for us.) */
|
|
//if( !mhflag ) ReportHeader(&lem);
|
|
}
|
|
if( statistics ){
|
|
printf("Parser statistics:\n");
|
|
stats_line("terminal symbols", lem.nterminal);
|
|
stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal);
|
|
stats_line("total symbols", lem.nsymbol);
|
|
stats_line("rules", lem.nrule);
|
|
stats_line("states", lem.nxstate);
|
|
stats_line("conflicts", lem.nconflict);
|
|
stats_line("action table entries", lem.nactiontab);
|
|
stats_line("total table size (bytes)", lem.tablesize);
|
|
}
|
|
if( lem.nconflict > 0 ){
|
|
fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
|
|
}
|
|
|
|
/* return 0 on success, 1 on failure. */
|
|
exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
|
|
exit(exitcode);
|
|
return (exitcode);
|
|
}
|
|
/******************** From the file "msort.c" *******************************/
|
|
/*
|
|
** A generic merge-sort program.
|
|
**
|
|
** USAGE:
|
|
** Let "ptr" be a pointer to some structure which is at the head of
|
|
** a null-terminated list. Then to sort the list call:
|
|
**
|
|
** ptr = msort(ptr,&(ptr->next),cmpfnc);
|
|
**
|
|
** In the above, "cmpfnc" is a pointer to a function which compares
|
|
** two instances of the structure and returns an integer, as in
|
|
** strcmp. The second argument is a pointer to the pointer to the
|
|
** second element of the linked list. This address is used to compute
|
|
** the offset to the "next" field within the structure. The offset to
|
|
** the "next" field must be constant for all structures in the list.
|
|
**
|
|
** The function returns a new pointer which is the head of the list
|
|
** after sorting.
|
|
**
|
|
** ALGORITHM:
|
|
** Merge-sort.
|
|
*/
|
|
|
|
/*
|
|
** Return a pointer to the next structure in the linked list.
|
|
*/
|
|
#define NEXT(A) (*(char**)(((char*)A)+offset))
|
|
|
|
/*
|
|
** Inputs:
|
|
** a: A sorted, null-terminated linked list. (May be null).
|
|
** b: A sorted, null-terminated linked list. (May be null).
|
|
** cmp: A pointer to the comparison function.
|
|
** offset: Offset in the structure to the "next" field.
|
|
**
|
|
** Return Value:
|
|
** A pointer to the head of a sorted list containing the elements
|
|
** of both a and b.
|
|
**
|
|
** Side effects:
|
|
** The "next" pointers for elements in the lists a and b are
|
|
** changed.
|
|
*/
|
|
static char *merge(
|
|
char *a,
|
|
char *b,
|
|
int (*cmp)(const char*,const char*),
|
|
int offset
|
|
){
|
|
char *ptr, *head;
|
|
|
|
if( a==0 ){
|
|
head = b;
|
|
}else if( b==0 ){
|
|
head = a;
|
|
}else{
|
|
if( (*cmp)(a,b)<=0 ){
|
|
ptr = a;
|
|
a = NEXT(a);
|
|
}else{
|
|
ptr = b;
|
|
b = NEXT(b);
|
|
}
|
|
head = ptr;
|
|
while( a && b ){
|
|
if( (*cmp)(a,b)<=0 ){
|
|
NEXT(ptr) = a;
|
|
ptr = a;
|
|
a = NEXT(a);
|
|
}else{
|
|
NEXT(ptr) = b;
|
|
ptr = b;
|
|
b = NEXT(b);
|
|
}
|
|
}
|
|
if( a ) NEXT(ptr) = a;
|
|
else NEXT(ptr) = b;
|
|
}
|
|
return head;
|
|
}
|
|
|
|
/*
|
|
** Inputs:
|
|
** list: Pointer to a singly-linked list of structures.
|
|
** next: Pointer to pointer to the second element of the list.
|
|
** cmp: A comparison function.
|
|
**
|
|
** Return Value:
|
|
** A pointer to the head of a sorted list containing the elements
|
|
** orginally in list.
|
|
**
|
|
** Side effects:
|
|
** The "next" pointers for elements in list are changed.
|
|
*/
|
|
#define LISTSIZE 30
|
|
static char *msort(
|
|
char *list,
|
|
char **next,
|
|
int (*cmp)(const char*,const char*)
|
|
){
|
|
unsigned long offset;
|
|
char *ep;
|
|
char *set[LISTSIZE];
|
|
int i;
|
|
offset = (unsigned long)((char*)next - (char*)list);
|
|
for(i=0; i<LISTSIZE; i++) set[i] = 0;
|
|
while( list ){
|
|
ep = list;
|
|
list = NEXT(list);
|
|
NEXT(ep) = 0;
|
|
for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
|
|
ep = merge(ep,set[i],cmp,offset);
|
|
set[i] = 0;
|
|
}
|
|
set[i] = ep;
|
|
}
|
|
ep = 0;
|
|
for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
|
|
return ep;
|
|
}
|
|
/************************ From the file "option.c" **************************/
|
|
static char **argv;
|
|
static struct s_options *op;
|
|
static FILE *errstream;
|
|
|
|
#define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
|
|
|
|
/*
|
|
** Print the command line with a carrot pointing to the k-th character
|
|
** of the n-th field.
|
|
*/
|
|
static void errline(int n, int k, FILE *err)
|
|
{
|
|
int spcnt, i;
|
|
if( argv[0] ) fprintf(err,"%s",argv[0]);
|
|
spcnt = lemonStrlen(argv[0]) + 1;
|
|
for(i=1; i<n && argv[i]; i++){
|
|
fprintf(err," %s",argv[i]);
|
|
spcnt += lemonStrlen(argv[i])+1;
|
|
}
|
|
spcnt += k;
|
|
for(; argv[i]; i++) fprintf(err," %s",argv[i]);
|
|
if( spcnt<20 ){
|
|
fprintf(err,"\n%*s^-- here\n",spcnt,"");
|
|
}else{
|
|
fprintf(err,"\n%*shere --^\n",spcnt-7,"");
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the index of the N-th non-switch argument. Return -1
|
|
** if N is out of range.
|
|
*/
|
|
static int argindex(int n)
|
|
{
|
|
int i;
|
|
int dashdash = 0;
|
|
if( argv!=0 && *argv!=0 ){
|
|
for(i=1; argv[i]; i++){
|
|
if( dashdash || !ISOPT(argv[i]) ){
|
|
if( n==0 ) return i;
|
|
n--;
|
|
}
|
|
if( strcmp(argv[i],"--")==0 ) dashdash = 1;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static char emsg[] = "Command line syntax error: ";
|
|
|
|
/*
|
|
** Process a flag command line argument.
|
|
*/
|
|
static int handleflags(int i, FILE *err)
|
|
{
|
|
int v;
|
|
int errcnt = 0;
|
|
int j;
|
|
for(j=0; op[j].label; j++){
|
|
if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
|
|
}
|
|
v = argv[i][0]=='-' ? 1 : 0;
|
|
if( op[j].label==0 ){
|
|
if( err ){
|
|
fprintf(err,"%sundefined option.\n",emsg);
|
|
errline(i,1,err);
|
|
}
|
|
errcnt++;
|
|
}else if( op[j].arg==0 ){
|
|
/* Ignore this option */
|
|
}else if( op[j].type==OPT_FLAG ){
|
|
*((int*)op[j].arg) = v;
|
|
}else if( op[j].type==OPT_FFLAG ){
|
|
(*(void(*)(int))(op[j].arg))(v);
|
|
}else if( op[j].type==OPT_FSTR ){
|
|
(*(void(*)(char *))(op[j].arg))(&argv[i][2]);
|
|
}else{
|
|
if( err ){
|
|
fprintf(err,"%smissing argument on switch.\n",emsg);
|
|
errline(i,1,err);
|
|
}
|
|
errcnt++;
|
|
}
|
|
return errcnt;
|
|
}
|
|
|
|
/*
|
|
** Process a command line switch which has an argument.
|
|
*/
|
|
static int handleswitch(int i, FILE *err)
|
|
{
|
|
int lv = 0;
|
|
double dv = 0.0;
|
|
char *sv = 0, *end;
|
|
char *cp;
|
|
int j;
|
|
int errcnt = 0;
|
|
cp = strchr(argv[i],'=');
|
|
assert( cp!=0 );
|
|
*cp = 0;
|
|
for(j=0; op[j].label; j++){
|
|
if( strcmp(argv[i],op[j].label)==0 ) break;
|
|
}
|
|
*cp = '=';
|
|
if( op[j].label==0 ){
|
|
if( err ){
|
|
fprintf(err,"%sundefined option.\n",emsg);
|
|
errline(i,0,err);
|
|
}
|
|
errcnt++;
|
|
}else{
|
|
cp++;
|
|
switch( op[j].type ){
|
|
case OPT_FLAG:
|
|
case OPT_FFLAG:
|
|
if( err ){
|
|
fprintf(err,"%soption requires an argument.\n",emsg);
|
|
errline(i,0,err);
|
|
}
|
|
errcnt++;
|
|
break;
|
|
case OPT_DBL:
|
|
case OPT_FDBL:
|
|
dv = strtod(cp,&end);
|
|
if( *end ){
|
|
if( err ){
|
|
fprintf(err,
|
|
"%sillegal character in floating-point argument.\n",emsg);
|
|
errline(i,(int)((char*)end-(char*)argv[i]),err);
|
|
}
|
|
errcnt++;
|
|
}
|
|
break;
|
|
case OPT_INT:
|
|
case OPT_FINT:
|
|
lv = strtol(cp,&end,0);
|
|
if( *end ){
|
|
if( err ){
|
|
fprintf(err,"%sillegal character in integer argument.\n",emsg);
|
|
errline(i,(int)((char*)end-(char*)argv[i]),err);
|
|
}
|
|
errcnt++;
|
|
}
|
|
break;
|
|
case OPT_STR:
|
|
case OPT_FSTR:
|
|
sv = cp;
|
|
break;
|
|
}
|
|
switch( op[j].type ){
|
|
case OPT_FLAG:
|
|
case OPT_FFLAG:
|
|
break;
|
|
case OPT_DBL:
|
|
*(double*)(op[j].arg) = dv;
|
|
break;
|
|
case OPT_FDBL:
|
|
(*(void(*)(double))(op[j].arg))(dv);
|
|
break;
|
|
case OPT_INT:
|
|
*(int*)(op[j].arg) = lv;
|
|
break;
|
|
case OPT_FINT:
|
|
(*(void(*)(int))(op[j].arg))((int)lv);
|
|
break;
|
|
case OPT_STR:
|
|
*(char**)(op[j].arg) = sv;
|
|
break;
|
|
case OPT_FSTR:
|
|
(*(void(*)(char *))(op[j].arg))(sv);
|
|
break;
|
|
}
|
|
}
|
|
return errcnt;
|
|
}
|
|
|
|
int OptInit(char **a, struct s_options *o, FILE *err)
|
|
{
|
|
int errcnt = 0;
|
|
argv = a;
|
|
op = o;
|
|
errstream = err;
|
|
if( argv && *argv && op ){
|
|
int i;
|
|
for(i=1; argv[i]; i++){
|
|
if( argv[i][0]=='+' || argv[i][0]=='-' ){
|
|
errcnt += handleflags(i,err);
|
|
}else if( strchr(argv[i],'=') ){
|
|
errcnt += handleswitch(i,err);
|
|
}
|
|
}
|
|
}
|
|
if( errcnt>0 ){
|
|
fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
|
|
OptPrint();
|
|
exit(1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int OptNArgs(){
|
|
int cnt = 0;
|
|
int dashdash = 0;
|
|
int i;
|
|
if( argv!=0 && argv[0]!=0 ){
|
|
for(i=1; argv[i]; i++){
|
|
if( dashdash || !ISOPT(argv[i]) ) cnt++;
|
|
if( strcmp(argv[i],"--")==0 ) dashdash = 1;
|
|
}
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
char *OptArg(int n)
|
|
{
|
|
int i;
|
|
i = argindex(n);
|
|
return i>=0 ? argv[i] : 0;
|
|
}
|
|
|
|
void OptErr(int n)
|
|
{
|
|
int i;
|
|
i = argindex(n);
|
|
if( i>=0 ) errline(i,0,errstream);
|
|
}
|
|
|
|
void OptPrint(){
|
|
int i;
|
|
int max, len;
|
|
max = 0;
|
|
for(i=0; op[i].label; i++){
|
|
len = lemonStrlen(op[i].label) + 1;
|
|
switch( op[i].type ){
|
|
case OPT_FLAG:
|
|
case OPT_FFLAG:
|
|
break;
|
|
case OPT_INT:
|
|
case OPT_FINT:
|
|
len += 9; /* length of "<integer>" */
|
|
break;
|
|
case OPT_DBL:
|
|
case OPT_FDBL:
|
|
len += 6; /* length of "<real>" */
|
|
break;
|
|
case OPT_STR:
|
|
case OPT_FSTR:
|
|
len += 8; /* length of "<string>" */
|
|
break;
|
|
}
|
|
if( len>max ) max = len;
|
|
}
|
|
for(i=0; op[i].label; i++){
|
|
switch( op[i].type ){
|
|
case OPT_FLAG:
|
|
case OPT_FFLAG:
|
|
fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message);
|
|
break;
|
|
case OPT_INT:
|
|
case OPT_FINT:
|
|
fprintf(errstream," -%s<integer>%*s %s\n",op[i].label,
|
|
(int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
|
|
break;
|
|
case OPT_DBL:
|
|
case OPT_FDBL:
|
|
fprintf(errstream," -%s<real>%*s %s\n",op[i].label,
|
|
(int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
|
|
break;
|
|
case OPT_STR:
|
|
case OPT_FSTR:
|
|
fprintf(errstream," -%s<string>%*s %s\n",op[i].label,
|
|
(int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/*********************** From the file "parse.c" ****************************/
|
|
/*
|
|
** Input file parser for the LEMON parser generator.
|
|
*/
|
|
|
|
/* The state of the parser */
|
|
enum e_state {
|
|
INITIALIZE,
|
|
WAITING_FOR_DECL_OR_RULE,
|
|
WAITING_FOR_DECL_KEYWORD,
|
|
WAITING_FOR_DECL_ARG,
|
|
WAITING_FOR_PRECEDENCE_SYMBOL,
|
|
WAITING_FOR_ARROW,
|
|
IN_RHS,
|
|
LHS_ALIAS_1,
|
|
LHS_ALIAS_2,
|
|
LHS_ALIAS_3,
|
|
RHS_ALIAS_1,
|
|
RHS_ALIAS_2,
|
|
PRECEDENCE_MARK_1,
|
|
PRECEDENCE_MARK_2,
|
|
RESYNC_AFTER_RULE_ERROR,
|
|
RESYNC_AFTER_DECL_ERROR,
|
|
WAITING_FOR_DESTRUCTOR_SYMBOL,
|
|
WAITING_FOR_DATATYPE_SYMBOL,
|
|
WAITING_FOR_FALLBACK_ID,
|
|
WAITING_FOR_WILDCARD_ID,
|
|
WAITING_FOR_CLASS_ID,
|
|
WAITING_FOR_CLASS_TOKEN
|
|
};
|
|
struct pstate {
|
|
char *filename; /* Name of the input file */
|
|
int tokenlineno; /* Linenumber at which current token starts */
|
|
int errorcnt; /* Number of errors so far */
|
|
char *tokenstart; /* Text of current token */
|
|
struct lemon *gp; /* Global state vector */
|
|
enum e_state state; /* The state of the parser */
|
|
struct symbol *fallback; /* The fallback token */
|
|
struct symbol *tkclass; /* Token class symbol */
|
|
struct symbol *lhs; /* Left-hand side of current rule */
|
|
const char *lhsalias; /* Alias for the LHS */
|
|
int nrhs; /* Number of right-hand side symbols seen */
|
|
struct symbol *rhs[MAXRHS]; /* RHS symbols */
|
|
const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
|
|
struct rule *prevrule; /* Previous rule parsed */
|
|
const char *declkeyword; /* Keyword of a declaration */
|
|
char **declargslot; /* Where the declaration argument should be put */
|
|
int insertLineMacro; /* Add #line before declaration insert */
|
|
int *decllinenoslot; /* Where to write declaration line number */
|
|
enum e_assoc declassoc; /* Assign this association to decl arguments */
|
|
int preccounter; /* Assign this precedence to decl arguments */
|
|
struct rule *firstrule; /* Pointer to first rule in the grammar */
|
|
struct rule *lastrule; /* Pointer to the most recently parsed rule */
|
|
};
|
|
|
|
/* Parse a single token */
|
|
static void parseonetoken(struct pstate *psp)
|
|
{
|
|
const char *x;
|
|
x = Strsafe(psp->tokenstart); /* Save the token permanently */
|
|
#if 0
|
|
printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
|
|
x,psp->state);
|
|
#endif
|
|
switch( psp->state ){
|
|
case INITIALIZE:
|
|
psp->prevrule = 0;
|
|
psp->preccounter = 0;
|
|
psp->firstrule = psp->lastrule = 0;
|
|
psp->gp->nrule = 0;
|
|
/* Fall thru to next case */
|
|
case WAITING_FOR_DECL_OR_RULE:
|
|
if( x[0]=='%' ){
|
|
psp->state = WAITING_FOR_DECL_KEYWORD;
|
|
}else if( ISLOWER(x[0]) ){
|
|
psp->lhs = Symbol_new(x);
|
|
psp->nrhs = 0;
|
|
psp->lhsalias = 0;
|
|
psp->state = WAITING_FOR_ARROW;
|
|
}else if( x[0]=='{' ){
|
|
if( psp->prevrule==0 ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"There is no prior rule upon which to attach the code \
|
|
fragment which begins on this line.");
|
|
psp->errorcnt++;
|
|
}else if( psp->prevrule->code!=0 ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Code fragment beginning on this line is not the first \
|
|
to follow the previous rule.");
|
|
psp->errorcnt++;
|
|
}else{
|
|
psp->prevrule->line = psp->tokenlineno;
|
|
psp->prevrule->code = &x[1];
|
|
psp->prevrule->noCode = 0;
|
|
}
|
|
}else if( x[0]=='[' ){
|
|
psp->state = PRECEDENCE_MARK_1;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Token \"%s\" should be either \"%%\" or a nonterminal name.",
|
|
x);
|
|
psp->errorcnt++;
|
|
}
|
|
break;
|
|
case PRECEDENCE_MARK_1:
|
|
if( !ISUPPER(x[0]) ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"The precedence symbol must be a terminal.");
|
|
psp->errorcnt++;
|
|
}else if( psp->prevrule==0 ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"There is no prior rule to assign precedence \"[%s]\".",x);
|
|
psp->errorcnt++;
|
|
}else if( psp->prevrule->precsym!=0 ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Precedence mark on this line is not the first \
|
|
to follow the previous rule.");
|
|
psp->errorcnt++;
|
|
}else{
|
|
psp->prevrule->precsym = Symbol_new(x);
|
|
}
|
|
psp->state = PRECEDENCE_MARK_2;
|
|
break;
|
|
case PRECEDENCE_MARK_2:
|
|
if( x[0]!=']' ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Missing \"]\" on precedence mark.");
|
|
psp->errorcnt++;
|
|
}
|
|
psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
break;
|
|
case WAITING_FOR_ARROW:
|
|
if( x[0]==':' && x[1]==':' && x[2]=='=' ){
|
|
psp->state = IN_RHS;
|
|
}else if( x[0]=='(' ){
|
|
psp->state = LHS_ALIAS_1;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Expected to see a \":\" following the LHS symbol \"%s\".",
|
|
psp->lhs->name);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_RULE_ERROR;
|
|
}
|
|
break;
|
|
case LHS_ALIAS_1:
|
|
if( ISALPHA(x[0]) ){
|
|
psp->lhsalias = x;
|
|
psp->state = LHS_ALIAS_2;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"\"%s\" is not a valid alias for the LHS \"%s\"\n",
|
|
x,psp->lhs->name);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_RULE_ERROR;
|
|
}
|
|
break;
|
|
case LHS_ALIAS_2:
|
|
if( x[0]==')' ){
|
|
psp->state = LHS_ALIAS_3;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_RULE_ERROR;
|
|
}
|
|
break;
|
|
case LHS_ALIAS_3:
|
|
if( x[0]==':' && x[1]==':' && x[2]=='=' ){
|
|
psp->state = IN_RHS;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Missing \"->\" following: \"%s(%s)\".",
|
|
psp->lhs->name,psp->lhsalias);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_RULE_ERROR;
|
|
}
|
|
break;
|
|
case IN_RHS:
|
|
if( x[0]=='.' ){
|
|
struct rule *rp;
|
|
rp = (struct rule *)calloc( sizeof(struct rule) +
|
|
sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
|
|
if( rp==0 ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Can't allocate enough memory for this rule.");
|
|
psp->errorcnt++;
|
|
psp->prevrule = 0;
|
|
}else{
|
|
int i;
|
|
rp->ruleline = psp->tokenlineno;
|
|
rp->rhs = (struct symbol**)&rp[1];
|
|
rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
|
|
for(i=0; i<psp->nrhs; i++){
|
|
rp->rhs[i] = psp->rhs[i];
|
|
rp->rhsalias[i] = psp->alias[i];
|
|
}
|
|
rp->lhs = psp->lhs;
|
|
rp->lhsalias = psp->lhsalias;
|
|
rp->nrhs = psp->nrhs;
|
|
rp->code = 0;
|
|
rp->noCode = 1;
|
|
rp->precsym = 0;
|
|
rp->index = psp->gp->nrule++;
|
|
rp->nextlhs = rp->lhs->rule;
|
|
rp->lhs->rule = rp;
|
|
rp->next = 0;
|
|
if( psp->firstrule==0 ){
|
|
psp->firstrule = psp->lastrule = rp;
|
|
}else{
|
|
psp->lastrule->next = rp;
|
|
psp->lastrule = rp;
|
|
}
|
|
psp->prevrule = rp;
|
|
}
|
|
psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
}else if( ISALPHA(x[0]) ){
|
|
if( psp->nrhs>=MAXRHS ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Too many symbols on RHS of rule beginning at \"%s\".",
|
|
x);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_RULE_ERROR;
|
|
}else{
|
|
psp->rhs[psp->nrhs] = Symbol_new(x);
|
|
psp->alias[psp->nrhs] = 0;
|
|
psp->nrhs++;
|
|
}
|
|
}else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){
|
|
struct symbol *msp = psp->rhs[psp->nrhs-1];
|
|
if( msp->type!=MULTITERMINAL ){
|
|
struct symbol *origsp = msp;
|
|
msp = (struct symbol *) calloc(1,sizeof(*msp));
|
|
memset(msp, 0, sizeof(*msp));
|
|
msp->type = MULTITERMINAL;
|
|
msp->nsubsym = 1;
|
|
msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
|
|
msp->subsym[0] = origsp;
|
|
msp->name = origsp->name;
|
|
psp->rhs[psp->nrhs-1] = msp;
|
|
}
|
|
msp->nsubsym++;
|
|
msp->subsym = (struct symbol **) realloc(msp->subsym,
|
|
sizeof(struct symbol*)*msp->nsubsym);
|
|
msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
|
|
if( ISLOWER(x[1]) || ISLOWER(msp->subsym[0]->name[0]) ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Cannot form a compound containing a non-terminal");
|
|
psp->errorcnt++;
|
|
}
|
|
}else if( x[0]=='(' && psp->nrhs>0 ){
|
|
psp->state = RHS_ALIAS_1;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Illegal character on RHS of rule: \"%s\".",x);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_RULE_ERROR;
|
|
}
|
|
break;
|
|
case RHS_ALIAS_1:
|
|
if( ISALPHA(x[0]) ){
|
|
psp->alias[psp->nrhs-1] = x;
|
|
psp->state = RHS_ALIAS_2;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
|
|
x,psp->rhs[psp->nrhs-1]->name);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_RULE_ERROR;
|
|
}
|
|
break;
|
|
case RHS_ALIAS_2:
|
|
if( x[0]==')' ){
|
|
psp->state = IN_RHS;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_RULE_ERROR;
|
|
}
|
|
break;
|
|
case WAITING_FOR_DECL_KEYWORD:
|
|
if( ISALPHA(x[0]) ){
|
|
psp->declkeyword = x;
|
|
psp->declargslot = 0;
|
|
psp->decllinenoslot = 0;
|
|
psp->insertLineMacro = 1;
|
|
psp->state = WAITING_FOR_DECL_ARG;
|
|
if( strcmp(x,"name")==0 ){
|
|
psp->declargslot = &(psp->gp->name);
|
|
psp->insertLineMacro = 0;
|
|
}else if( strcmp(x,"include")==0 ){
|
|
psp->declargslot = &(psp->gp->include);
|
|
}else if( strcmp(x,"code")==0 ){
|
|
psp->declargslot = &(psp->gp->extracode);
|
|
}else if( strcmp(x,"token_destructor")==0 ){
|
|
psp->declargslot = &psp->gp->tokendest;
|
|
}else if( strcmp(x,"default_destructor")==0 ){
|
|
psp->declargslot = &psp->gp->vardest;
|
|
}else if( strcmp(x,"token_prefix")==0 ){
|
|
psp->declargslot = &psp->gp->tokenprefix;
|
|
psp->insertLineMacro = 0;
|
|
}else if( strcmp(x,"syntax_error")==0 ){
|
|
psp->declargslot = &(psp->gp->error);
|
|
}else if( strcmp(x,"parse_accept")==0 ){
|
|
psp->declargslot = &(psp->gp->accept);
|
|
}else if( strcmp(x,"parse_failure")==0 ){
|
|
psp->declargslot = &(psp->gp->failure);
|
|
}else if( strcmp(x,"stack_overflow")==0 ){
|
|
psp->declargslot = &(psp->gp->overflow);
|
|
}else if( strcmp(x,"extra_argument")==0 ){
|
|
psp->declargslot = &(psp->gp->arg);
|
|
psp->insertLineMacro = 0;
|
|
}else if( strcmp(x,"token_type")==0 ){
|
|
psp->declargslot = &(psp->gp->tokentype);
|
|
psp->insertLineMacro = 0;
|
|
}else if( strcmp(x,"default_type")==0 ){
|
|
psp->declargslot = &(psp->gp->vartype);
|
|
psp->insertLineMacro = 0;
|
|
}else if( strcmp(x,"stack_size")==0 ){
|
|
psp->declargslot = &(psp->gp->stacksize);
|
|
psp->insertLineMacro = 0;
|
|
}else if( strcmp(x,"start_symbol")==0 ){
|
|
psp->declargslot = &(psp->gp->start);
|
|
psp->insertLineMacro = 0;
|
|
}else if( strcmp(x,"left")==0 ){
|
|
psp->preccounter++;
|
|
psp->declassoc = LEFT;
|
|
psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
|
|
}else if( strcmp(x,"right")==0 ){
|
|
psp->preccounter++;
|
|
psp->declassoc = RIGHT;
|
|
psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
|
|
}else if( strcmp(x,"nonassoc")==0 ){
|
|
psp->preccounter++;
|
|
psp->declassoc = NONE;
|
|
psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
|
|
}else if( strcmp(x,"destructor")==0 ){
|
|
psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
|
|
}else if( strcmp(x,"type")==0 ){
|
|
psp->state = WAITING_FOR_DATATYPE_SYMBOL;
|
|
}else if( strcmp(x,"fallback")==0 ){
|
|
psp->fallback = 0;
|
|
psp->state = WAITING_FOR_FALLBACK_ID;
|
|
}else if( strcmp(x,"wildcard")==0 ){
|
|
psp->state = WAITING_FOR_WILDCARD_ID;
|
|
}else if( strcmp(x,"token_class")==0 ){
|
|
psp->state = WAITING_FOR_CLASS_ID;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Unknown declaration keyword: \"%%%s\".",x);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_DECL_ERROR;
|
|
}
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Illegal declaration keyword: \"%s\".",x);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_DECL_ERROR;
|
|
}
|
|
break;
|
|
case WAITING_FOR_DESTRUCTOR_SYMBOL:
|
|
if( !ISALPHA(x[0]) ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Symbol name missing after %%destructor keyword");
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_DECL_ERROR;
|
|
}else{
|
|
struct symbol *sp = Symbol_new(x);
|
|
psp->declargslot = &sp->destructor;
|
|
psp->decllinenoslot = &sp->destLineno;
|
|
psp->insertLineMacro = 1;
|
|
psp->state = WAITING_FOR_DECL_ARG;
|
|
}
|
|
break;
|
|
case WAITING_FOR_DATATYPE_SYMBOL:
|
|
if( !ISALPHA(x[0]) ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Symbol name missing after %%type keyword");
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_DECL_ERROR;
|
|
}else{
|
|
struct symbol *sp = Symbol_find(x);
|
|
if((sp) && (sp->datatype)){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Symbol %%type \"%s\" already defined", x);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_DECL_ERROR;
|
|
}else{
|
|
if (!sp){
|
|
sp = Symbol_new(x);
|
|
}
|
|
psp->declargslot = &sp->datatype;
|
|
psp->insertLineMacro = 0;
|
|
psp->state = WAITING_FOR_DECL_ARG;
|
|
}
|
|
}
|
|
break;
|
|
case WAITING_FOR_PRECEDENCE_SYMBOL:
|
|
if( x[0]=='.' ){
|
|
psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
}else if( ISUPPER(x[0]) ){
|
|
struct symbol *sp;
|
|
sp = Symbol_new(x);
|
|
if( sp->prec>=0 ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Symbol \"%s\" has already be given a precedence.",x);
|
|
psp->errorcnt++;
|
|
}else{
|
|
sp->prec = psp->preccounter;
|
|
sp->assoc = psp->declassoc;
|
|
}
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Can't assign a precedence to \"%s\".",x);
|
|
psp->errorcnt++;
|
|
}
|
|
break;
|
|
case WAITING_FOR_DECL_ARG:
|
|
if( x[0]=='{' || x[0]=='\"' || ISALNUM(x[0]) ){
|
|
const char *zOld, *zNew;
|
|
char *zBuf, *z;
|
|
int nOld, n, nLine = 0, nNew, nBack;
|
|
int addLineMacro;
|
|
char zLine[50];
|
|
zNew = x;
|
|
if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
|
|
nNew = lemonStrlen(zNew);
|
|
if( *psp->declargslot ){
|
|
zOld = *psp->declargslot;
|
|
}else{
|
|
zOld = "";
|
|
}
|
|
nOld = lemonStrlen(zOld);
|
|
n = nOld + nNew + 20;
|
|
addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro &&
|
|
(psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
|
|
if( addLineMacro ){
|
|
for(z=psp->filename, nBack=0; *z; z++){
|
|
if( *z=='\\' ) nBack++;
|
|
}
|
|
lemon_sprintf(zLine, "// line %d ", psp->tokenlineno);
|
|
nLine = lemonStrlen(zLine);
|
|
n += nLine + lemonStrlen(psp->filename) + nBack;
|
|
}
|
|
*psp->declargslot = (char *) realloc(*psp->declargslot, n);
|
|
zBuf = *psp->declargslot + nOld;
|
|
if( addLineMacro ){
|
|
if( nOld && zBuf[-1]!='\n' ){
|
|
*(zBuf++) = '\n';
|
|
}
|
|
memcpy(zBuf, zLine, nLine);
|
|
zBuf += nLine;
|
|
*(zBuf++) = '"';
|
|
for(z=psp->filename; *z; z++){
|
|
if( *z=='\\' ){
|
|
*(zBuf++) = '\\';
|
|
}
|
|
*(zBuf++) = *z;
|
|
}
|
|
*(zBuf++) = '"';
|
|
*(zBuf++) = '\n';
|
|
}
|
|
if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
|
|
psp->decllinenoslot[0] = psp->tokenlineno;
|
|
}
|
|
memcpy(zBuf, zNew, nNew);
|
|
zBuf += nNew;
|
|
*zBuf = 0;
|
|
psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Illegal argument to %%%s: %s",psp->declkeyword,x);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_DECL_ERROR;
|
|
}
|
|
break;
|
|
case WAITING_FOR_FALLBACK_ID:
|
|
if( x[0]=='.' ){
|
|
psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
}else if( !ISUPPER(x[0]) ){
|
|
ErrorMsg(psp->filename, psp->tokenlineno,
|
|
"%%fallback argument \"%s\" should be a token", x);
|
|
psp->errorcnt++;
|
|
}else{
|
|
struct symbol *sp = Symbol_new(x);
|
|
if( psp->fallback==0 ){
|
|
psp->fallback = sp;
|
|
}else if( sp->fallback ){
|
|
ErrorMsg(psp->filename, psp->tokenlineno,
|
|
"More than one fallback assigned to token %s", x);
|
|
psp->errorcnt++;
|
|
}else{
|
|
sp->fallback = psp->fallback;
|
|
psp->gp->has_fallback = 1;
|
|
}
|
|
}
|
|
break;
|
|
case WAITING_FOR_WILDCARD_ID:
|
|
if( x[0]=='.' ){
|
|
psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
}else if( !ISUPPER(x[0]) ){
|
|
ErrorMsg(psp->filename, psp->tokenlineno,
|
|
"%%wildcard argument \"%s\" should be a token", x);
|
|
psp->errorcnt++;
|
|
}else{
|
|
struct symbol *sp = Symbol_new(x);
|
|
if( psp->gp->wildcard==0 ){
|
|
psp->gp->wildcard = sp;
|
|
}else{
|
|
ErrorMsg(psp->filename, psp->tokenlineno,
|
|
"Extra wildcard to token: %s", x);
|
|
psp->errorcnt++;
|
|
}
|
|
}
|
|
break;
|
|
case WAITING_FOR_CLASS_ID:
|
|
if( !ISLOWER(x[0]) ){
|
|
ErrorMsg(psp->filename, psp->tokenlineno,
|
|
"%%token_class must be followed by an identifier: ", x);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_DECL_ERROR;
|
|
}else if( Symbol_find(x) ){
|
|
ErrorMsg(psp->filename, psp->tokenlineno,
|
|
"Symbol \"%s\" already used", x);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_DECL_ERROR;
|
|
}else{
|
|
psp->tkclass = Symbol_new(x);
|
|
psp->tkclass->type = MULTITERMINAL;
|
|
psp->state = WAITING_FOR_CLASS_TOKEN;
|
|
}
|
|
break;
|
|
case WAITING_FOR_CLASS_TOKEN:
|
|
if( x[0]=='.' ){
|
|
psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
}else if( ISUPPER(x[0]) || ((x[0]=='|' || x[0]=='/') && ISUPPER(x[1])) ){
|
|
struct symbol *msp = psp->tkclass;
|
|
msp->nsubsym++;
|
|
msp->subsym = (struct symbol **) realloc(msp->subsym,
|
|
sizeof(struct symbol*)*msp->nsubsym);
|
|
if( !ISUPPER(x[0]) ) x++;
|
|
msp->subsym[msp->nsubsym-1] = Symbol_new(x);
|
|
}else{
|
|
ErrorMsg(psp->filename, psp->tokenlineno,
|
|
"%%token_class argument \"%s\" should be a token", x);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_DECL_ERROR;
|
|
}
|
|
break;
|
|
case RESYNC_AFTER_RULE_ERROR:
|
|
/* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
** break; */
|
|
case RESYNC_AFTER_DECL_ERROR:
|
|
if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Run the preprocessor over the input file text. The global variables
|
|
** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
|
|
** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
|
|
** comments them out. Text in between is also commented out as appropriate.
|
|
*/
|
|
static void preprocess_input(char *z){
|
|
int i, j, k, n;
|
|
int exclude = 0;
|
|
int start = 0;
|
|
int lineno = 1;
|
|
int start_lineno = 1;
|
|
for(i=0; z[i]; i++){
|
|
if( z[i]=='\n' ) lineno++;
|
|
if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
|
|
if( strncmp(&z[i],"%endif",6)==0 && ISSPACE(z[i+6]) ){
|
|
if( exclude ){
|
|
exclude--;
|
|
if( exclude==0 ){
|
|
for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
|
|
}
|
|
}
|
|
for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
|
|
}else if( (strncmp(&z[i],"%ifdef",6)==0 && ISSPACE(z[i+6]))
|
|
|| (strncmp(&z[i],"%ifndef",7)==0 && ISSPACE(z[i+7])) ){
|
|
if( exclude ){
|
|
exclude++;
|
|
}else{
|
|
for(j=i+7; ISSPACE(z[j]); j++){}
|
|
for(n=0; z[j+n] && !ISSPACE(z[j+n]); n++){}
|
|
exclude = 1;
|
|
for(k=0; k<nDefine; k++){
|
|
if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){
|
|
exclude = 0;
|
|
break;
|
|
}
|
|
}
|
|
if( z[i+3]=='n' ) exclude = !exclude;
|
|
if( exclude ){
|
|
start = i;
|
|
start_lineno = lineno;
|
|
}
|
|
}
|
|
for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
|
|
}
|
|
}
|
|
if( exclude ){
|
|
fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* In spite of its name, this function is really a scanner. It read
|
|
** in the entire input file (all at once) then tokenizes it. Each
|
|
** token is passed to the function "parseonetoken" which builds all
|
|
** the appropriate data structures in the global state vector "gp".
|
|
*/
|
|
void Parse(struct lemon *gp)
|
|
{
|
|
struct pstate ps;
|
|
FILE *fp;
|
|
char *filebuf;
|
|
unsigned int filesize;
|
|
int lineno;
|
|
int c;
|
|
char *cp, *nextcp;
|
|
int startline = 0;
|
|
|
|
memset(&ps, '\0', sizeof(ps));
|
|
ps.gp = gp;
|
|
ps.filename = gp->filename;
|
|
ps.errorcnt = 0;
|
|
ps.state = INITIALIZE;
|
|
|
|
/* Begin by reading the input file */
|
|
fp = fopen(ps.filename,"rb");
|
|
if( fp==0 ){
|
|
ErrorMsg(ps.filename,0,"Can't open this file for reading.");
|
|
gp->errorcnt++;
|
|
return;
|
|
}
|
|
fseek(fp,0,2);
|
|
filesize = ftell(fp);
|
|
rewind(fp);
|
|
filebuf = (char *)malloc( filesize+1 );
|
|
if( filesize>100000000 || filebuf==0 ){
|
|
ErrorMsg(ps.filename,0,"Input file too large.");
|
|
gp->errorcnt++;
|
|
fclose(fp);
|
|
return;
|
|
}
|
|
if( fread(filebuf,1,filesize,fp)!=filesize ){
|
|
ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
|
|
filesize);
|
|
free(filebuf);
|
|
gp->errorcnt++;
|
|
fclose(fp);
|
|
return;
|
|
}
|
|
fclose(fp);
|
|
filebuf[filesize] = 0;
|
|
|
|
/* Make an initial pass through the file to handle %ifdef and %ifndef */
|
|
preprocess_input(filebuf);
|
|
|
|
/* Now scan the text of the input file */
|
|
lineno = 1;
|
|
for(cp=filebuf; (c= *cp)!=0; ){
|
|
if( c=='\n' ) lineno++; /* Keep track of the line number */
|
|
if( ISSPACE(c) ){ cp++; continue; } /* Skip all white space */
|
|
if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */
|
|
cp+=2;
|
|
while( (c= *cp)!=0 && c!='\n' ) cp++;
|
|
continue;
|
|
}
|
|
if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */
|
|
cp+=2;
|
|
while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
|
|
if( c=='\n' ) lineno++;
|
|
cp++;
|
|
}
|
|
if( c ) cp++;
|
|
continue;
|
|
}
|
|
ps.tokenstart = cp; /* Mark the beginning of the token */
|
|
ps.tokenlineno = lineno; /* Linenumber on which token begins */
|
|
if( c=='\"' ){ /* String literals */
|
|
cp++;
|
|
while( (c= *cp)!=0 && c!='\"' ){
|
|
if( c=='\n' ) lineno++;
|
|
cp++;
|
|
}
|
|
if( c==0 ){
|
|
ErrorMsg(ps.filename,startline,
|
|
"String starting on this line is not terminated before the end of the file.");
|
|
ps.errorcnt++;
|
|
nextcp = cp;
|
|
}else{
|
|
nextcp = cp+1;
|
|
}
|
|
}else if( c=='{' ){ /* A block of C code */
|
|
int level;
|
|
cp++;
|
|
for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
|
|
if( c=='\n' ) lineno++;
|
|
else if( c=='{' ) level++;
|
|
else if( c=='}' ) level--;
|
|
else if( c=='/' && cp[1]=='*' ){ /* Skip comments */
|
|
int prevc;
|
|
cp = &cp[2];
|
|
prevc = 0;
|
|
while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
|
|
if( c=='\n' ) lineno++;
|
|
prevc = c;
|
|
cp++;
|
|
}
|
|
}else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */
|
|
cp = &cp[2];
|
|
while( (c= *cp)!=0 && c!='\n' ) cp++;
|
|
if( c ) lineno++;
|
|
}else if( c=='\'' || c=='\"' ){ /* String a character literals */
|
|
int startchar, prevc;
|
|
startchar = c;
|
|
prevc = 0;
|
|
for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
|
|
if( c=='\n' ) lineno++;
|
|
if( prevc=='\\' ) prevc = 0;
|
|
else prevc = c;
|
|
}
|
|
}
|
|
}
|
|
if( c==0 ){
|
|
ErrorMsg(ps.filename,ps.tokenlineno,
|
|
"C code starting on this line is not terminated before the end of the file.");
|
|
ps.errorcnt++;
|
|
nextcp = cp;
|
|
}else{
|
|
nextcp = cp+1;
|
|
}
|
|
}else if( ISALNUM(c) ){ /* Identifiers */
|
|
while( (c= *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
|
|
nextcp = cp;
|
|
}else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
|
|
cp += 3;
|
|
nextcp = cp;
|
|
}else if( (c=='/' || c=='|') && ISALPHA(cp[1]) ){
|
|
cp += 2;
|
|
while( (c = *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
|
|
nextcp = cp;
|
|
}else{ /* All other (one character) operators */
|
|
cp++;
|
|
nextcp = cp;
|
|
}
|
|
c = *cp;
|
|
*cp = 0; /* Null terminate the token */
|
|
parseonetoken(&ps); /* Parse the token */
|
|
*cp = (char)c; /* Restore the buffer */
|
|
cp = nextcp;
|
|
}
|
|
free(filebuf); /* Release the buffer after parsing */
|
|
gp->rule = ps.firstrule;
|
|
gp->errorcnt = ps.errorcnt;
|
|
}
|
|
/*************************** From the file "plink.c" *********************/
|
|
/*
|
|
** Routines processing configuration follow-set propagation links
|
|
** in the LEMON parser generator.
|
|
*/
|
|
static struct plink *plink_freelist = 0;
|
|
|
|
/* Allocate a new plink */
|
|
struct plink *Plink_new(){
|
|
struct plink *newlink;
|
|
|
|
if( plink_freelist==0 ){
|
|
int i;
|
|
int amt = 100;
|
|
plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
|
|
if( plink_freelist==0 ){
|
|
fprintf(stderr,
|
|
"Unable to allocate memory for a new follow-set propagation link.\n");
|
|
exit(1);
|
|
}
|
|
for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
|
|
plink_freelist[amt-1].next = 0;
|
|
}
|
|
newlink = plink_freelist;
|
|
plink_freelist = plink_freelist->next;
|
|
return newlink;
|
|
}
|
|
|
|
/* Add a plink to a plink list */
|
|
void Plink_add(struct plink **plpp, struct config *cfp)
|
|
{
|
|
struct plink *newlink;
|
|
newlink = Plink_new();
|
|
newlink->next = *plpp;
|
|
*plpp = newlink;
|
|
newlink->cfp = cfp;
|
|
}
|
|
|
|
/* Transfer every plink on the list "from" to the list "to" */
|
|
void Plink_copy(struct plink **to, struct plink *from)
|
|
{
|
|
struct plink *nextpl;
|
|
while( from ){
|
|
nextpl = from->next;
|
|
from->next = *to;
|
|
*to = from;
|
|
from = nextpl;
|
|
}
|
|
}
|
|
|
|
/* Delete every plink on the list */
|
|
void Plink_delete(struct plink *plp)
|
|
{
|
|
struct plink *nextpl;
|
|
|
|
while( plp ){
|
|
nextpl = plp->next;
|
|
plp->next = plink_freelist;
|
|
plink_freelist = plp;
|
|
plp = nextpl;
|
|
}
|
|
}
|
|
/*********************** From the file "report.c" **************************/
|
|
/*
|
|
** Procedures for generating reports and tables in the LEMON parser generator.
|
|
*/
|
|
|
|
/* Generate a filename with the given suffix. Space to hold the
|
|
** name comes from malloc() and must be freed by the calling
|
|
** function.
|
|
*/
|
|
PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
|
|
{
|
|
char *name;
|
|
char *cp;
|
|
|
|
name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 );
|
|
if( name==0 ){
|
|
fprintf(stderr,"Can't allocate space for a filename.\n");
|
|
exit(1);
|
|
}
|
|
lemon_strcpy(name,lemp->filename);
|
|
cp = strrchr(name,'.');
|
|
if( cp ) *cp = 0;
|
|
lemon_strcat(name,suffix);
|
|
return name;
|
|
}
|
|
|
|
/* Open a file with a name based on the name of the input file,
|
|
** but with a different (specified) suffix, and return a pointer
|
|
** to the stream */
|
|
PRIVATE FILE *file_open(
|
|
struct lemon *lemp,
|
|
const char *suffix,
|
|
const char *mode
|
|
){
|
|
FILE *fp;
|
|
|
|
if( lemp->outname ) free(lemp->outname);
|
|
lemp->outname = file_makename(lemp, suffix);
|
|
fp = fopen(lemp->outname,mode);
|
|
if( fp==0 && *mode=='w' ){
|
|
fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
|
|
lemp->errorcnt++;
|
|
return 0;
|
|
}
|
|
return fp;
|
|
}
|
|
|
|
/* Duplicate the input file without comments and without actions
|
|
** on rules */
|
|
void Reprint(struct lemon *lemp)
|
|
{
|
|
struct rule *rp;
|
|
struct symbol *sp;
|
|
int i, j, maxlen, len, ncolumns, skip;
|
|
printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
|
|
maxlen = 10;
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
sp = lemp->symbols[i];
|
|
len = lemonStrlen(sp->name);
|
|
if( len>maxlen ) maxlen = len;
|
|
}
|
|
ncolumns = 76/(maxlen+5);
|
|
if( ncolumns<1 ) ncolumns = 1;
|
|
skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
|
|
for(i=0; i<skip; i++){
|
|
printf("//");
|
|
for(j=i; j<lemp->nsymbol; j+=skip){
|
|
sp = lemp->symbols[j];
|
|
assert( sp->index==j );
|
|
printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
|
|
}
|
|
printf("\n");
|
|
}
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
printf("%s",rp->lhs->name);
|
|
/* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
|
|
printf(" ::=");
|
|
for(i=0; i<rp->nrhs; i++){
|
|
sp = rp->rhs[i];
|
|
if( sp->type==MULTITERMINAL ){
|
|
printf(" %s", sp->subsym[0]->name);
|
|
for(j=1; j<sp->nsubsym; j++){
|
|
printf("|%s", sp->subsym[j]->name);
|
|
}
|
|
}else{
|
|
printf(" %s", sp->name);
|
|
}
|
|
/* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
|
|
}
|
|
printf(".");
|
|
if( rp->precsym ) printf(" [%s]",rp->precsym->name);
|
|
/* if( rp->code ) printf("\n %s",rp->code); */
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
/* Print a single rule.
|
|
*/
|
|
void RulePrint(FILE *fp, struct rule *rp, int iCursor){
|
|
struct symbol *sp;
|
|
int i, j;
|
|
fprintf(fp,"%s ::=",rp->lhs->name);
|
|
for(i=0; i<=rp->nrhs; i++){
|
|
if( i==iCursor ) fprintf(fp," *");
|
|
if( i==rp->nrhs ) break;
|
|
sp = rp->rhs[i];
|
|
if( sp->type==MULTITERMINAL ){
|
|
fprintf(fp," %s", sp->subsym[0]->name);
|
|
for(j=1; j<sp->nsubsym; j++){
|
|
fprintf(fp,"|%s",sp->subsym[j]->name);
|
|
}
|
|
}else{
|
|
fprintf(fp," %s", sp->name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Print the rule for a configuration.
|
|
*/
|
|
void ConfigPrint(FILE *fp, struct config *cfp){
|
|
RulePrint(fp, cfp->rp, cfp->dot);
|
|
}
|
|
|
|
/* #define TEST */
|
|
#if 0
|
|
/* Print a set */
|
|
PRIVATE void SetPrint(out,set,lemp)
|
|
FILE *out;
|
|
char *set;
|
|
struct lemon *lemp;
|
|
{
|
|
int i;
|
|
char *spacer;
|
|
spacer = "";
|
|
fprintf(out,"%12s[","");
|
|
for(i=0; i<lemp->nterminal; i++){
|
|
if( SetFind(set,i) ){
|
|
fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
|
|
spacer = " ";
|
|
}
|
|
}
|
|
fprintf(out,"]\n");
|
|
}
|
|
|
|
/* Print a plink chain */
|
|
PRIVATE void PlinkPrint(out,plp,tag)
|
|
FILE *out;
|
|
struct plink *plp;
|
|
char *tag;
|
|
{
|
|
while( plp ){
|
|
fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
|
|
ConfigPrint(out,plp->cfp);
|
|
fprintf(out,"\n");
|
|
plp = plp->next;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Print an action to the given file descriptor. Return FALSE if
|
|
** nothing was actually printed.
|
|
*/
|
|
int PrintAction(
|
|
struct action *ap, /* The action to print */
|
|
FILE *fp, /* Print the action here */
|
|
int indent /* Indent by this amount */
|
|
){
|
|
int result = 1;
|
|
switch( ap->type ){
|
|
case SHIFT: {
|
|
struct state *stp = ap->x.stp;
|
|
fprintf(fp,"%*s shift %-7d",indent,ap->sp->name,stp->statenum);
|
|
break;
|
|
}
|
|
case REDUCE: {
|
|
struct rule *rp = ap->x.rp;
|
|
fprintf(fp,"%*s reduce %-7d",indent,ap->sp->name,rp->iRule);
|
|
RulePrint(fp, rp, -1);
|
|
break;
|
|
}
|
|
case SHIFTREDUCE: {
|
|
struct rule *rp = ap->x.rp;
|
|
fprintf(fp,"%*s shift-reduce %-7d",indent,ap->sp->name,rp->iRule);
|
|
RulePrint(fp, rp, -1);
|
|
break;
|
|
}
|
|
case ACCEPT:
|
|
fprintf(fp,"%*s accept",indent,ap->sp->name);
|
|
break;
|
|
case ERROR:
|
|
fprintf(fp,"%*s error",indent,ap->sp->name);
|
|
break;
|
|
case SRCONFLICT:
|
|
case RRCONFLICT:
|
|
fprintf(fp,"%*s reduce %-7d ** Parsing conflict **",
|
|
indent,ap->sp->name,ap->x.rp->iRule);
|
|
break;
|
|
case SSCONFLICT:
|
|
fprintf(fp,"%*s shift %-7d ** Parsing conflict **",
|
|
indent,ap->sp->name,ap->x.stp->statenum);
|
|
break;
|
|
case SH_RESOLVED:
|
|
if( showPrecedenceConflict ){
|
|
fprintf(fp,"%*s shift %-7d -- dropped by precedence",
|
|
indent,ap->sp->name,ap->x.stp->statenum);
|
|
}else{
|
|
result = 0;
|
|
}
|
|
break;
|
|
case RD_RESOLVED:
|
|
if( showPrecedenceConflict ){
|
|
fprintf(fp,"%*s reduce %-7d -- dropped by precedence",
|
|
indent,ap->sp->name,ap->x.rp->iRule);
|
|
}else{
|
|
result = 0;
|
|
}
|
|
break;
|
|
case NOT_USED:
|
|
result = 0;
|
|
break;
|
|
}
|
|
if( result && ap->spOpt ){
|
|
fprintf(fp," /* because %s==%s */", ap->sp->name, ap->spOpt->name);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Generate the "*.out" log file */
|
|
void ReportOutput(struct lemon *lemp)
|
|
{
|
|
int i;
|
|
struct state *stp;
|
|
struct config *cfp;
|
|
struct action *ap;
|
|
FILE *fp;
|
|
|
|
fp = file_open(lemp,".out","wb");
|
|
if( fp==0 ) return;
|
|
for(i=0; i<lemp->nxstate; i++){
|
|
stp = lemp->sorted[i];
|
|
fprintf(fp,"State %d:\n",stp->statenum);
|
|
if( lemp->basisflag ) cfp=stp->bp;
|
|
else cfp=stp->cfp;
|
|
while( cfp ){
|
|
char buf[20];
|
|
if( cfp->dot==cfp->rp->nrhs ){
|
|
lemon_sprintf(buf,"(%d)",cfp->rp->iRule);
|
|
fprintf(fp," %5s ",buf);
|
|
}else{
|
|
fprintf(fp," ");
|
|
}
|
|
ConfigPrint(fp,cfp);
|
|
fprintf(fp,"\n");
|
|
#if 0
|
|
SetPrint(fp,cfp->fws,lemp);
|
|
PlinkPrint(fp,cfp->fplp,"To ");
|
|
PlinkPrint(fp,cfp->bplp,"From");
|
|
#endif
|
|
if( lemp->basisflag ) cfp=cfp->bp;
|
|
else cfp=cfp->next;
|
|
}
|
|
fprintf(fp,"\n");
|
|
for(ap=stp->ap; ap; ap=ap->next){
|
|
if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
|
|
}
|
|
fprintf(fp,"\n");
|
|
}
|
|
fprintf(fp, "----------------------------------------------------\n");
|
|
fprintf(fp, "Symbols:\n");
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
int j;
|
|
struct symbol *sp;
|
|
|
|
sp = lemp->symbols[i];
|
|
fprintf(fp, " %3d: %s", i, sp->name);
|
|
if( sp->type==NONTERMINAL ){
|
|
fprintf(fp, ":");
|
|
if( sp->lambda ){
|
|
fprintf(fp, " <lambda>");
|
|
}
|
|
for(j=0; j<lemp->nterminal; j++){
|
|
if( sp->firstset && SetFind(sp->firstset, j) ){
|
|
fprintf(fp, " %s", lemp->symbols[j]->name);
|
|
}
|
|
}
|
|
}
|
|
fprintf(fp, "\n");
|
|
}
|
|
fclose(fp);
|
|
return;
|
|
}
|
|
|
|
/* Search for the file "name" which is in the same directory as
|
|
** the exacutable */
|
|
PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
|
|
{
|
|
const char *pathlist;
|
|
char *pathbufptr;
|
|
char *pathbuf;
|
|
char *path,*cp;
|
|
char c;
|
|
|
|
#ifdef __WIN32__
|
|
cp = strrchr(argv0,'\\');
|
|
#else
|
|
cp = strrchr(argv0,'/');
|
|
#endif
|
|
if( cp ){
|
|
c = *cp;
|
|
*cp = 0;
|
|
path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
|
|
if( path ) lemon_sprintf(path,"%s/%s",argv0,name);
|
|
*cp = c;
|
|
}else{
|
|
pathlist = getenv("PATH");
|
|
if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
|
|
pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 );
|
|
path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
|
|
if( (pathbuf != 0) && (path!=0) ){
|
|
pathbufptr = pathbuf;
|
|
lemon_strcpy(pathbuf, pathlist);
|
|
while( *pathbuf ){
|
|
cp = strchr(pathbuf,':');
|
|
if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
|
|
c = *cp;
|
|
*cp = 0;
|
|
lemon_sprintf(path,"%s/%s",pathbuf,name);
|
|
*cp = c;
|
|
if( c==0 ) pathbuf[0] = 0;
|
|
else pathbuf = &cp[1];
|
|
if( access(path,modemask)==0 ) break;
|
|
}
|
|
free(pathbufptr);
|
|
}
|
|
}
|
|
return path;
|
|
}
|
|
|
|
/* Given an action, compute the integer value for that action
|
|
** which is to be put in the action table of the generated machine.
|
|
** Return negative if no action should be generated.
|
|
*/
|
|
PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
|
|
{
|
|
int act;
|
|
switch( ap->type ){
|
|
case SHIFT: act = ap->x.stp->statenum; break;
|
|
case SHIFTREDUCE: act = ap->x.rp->iRule + lemp->nstate; break;
|
|
case REDUCE: act = ap->x.rp->iRule + lemp->nstate+lemp->nrule; break;
|
|
case ERROR: act = lemp->nstate + lemp->nrule*2; break;
|
|
case ACCEPT: act = lemp->nstate + lemp->nrule*2 + 1; break;
|
|
default: act = -1; break;
|
|
}
|
|
return act;
|
|
}
|
|
|
|
#define LINESIZE 1000
|
|
/* The next cluster of routines are for reading the template file
|
|
** and writing the results to the generated parser */
|
|
/* The first function transfers data from "in" to "out" until
|
|
** a line is seen which begins with "%%". The line number is
|
|
** tracked.
|
|
**
|
|
** if name!=0, then any word that begin with "Parse" is changed to
|
|
** begin with *name instead.
|
|
*/
|
|
PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
|
|
{
|
|
int i, iStart;
|
|
char line[LINESIZE];
|
|
while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
|
|
(*lineno)++;
|
|
iStart = 0;
|
|
if( name ){
|
|
for(i=0; line[i]; i++){
|
|
if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
|
|
&& (i==0 || !ISALPHA(line[i-1]))
|
|
){
|
|
if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
|
|
fprintf(out,"%s",name);
|
|
i += 4;
|
|
iStart = i+1;
|
|
}
|
|
}
|
|
}
|
|
fprintf(out,"%s",&line[iStart]);
|
|
}
|
|
}
|
|
|
|
/* The next function finds the template file and opens it, returning
|
|
** a pointer to the opened file. */
|
|
PRIVATE FILE *tplt_open(struct lemon *lemp)
|
|
{
|
|
static char templatename[] = "lempar.js";
|
|
char buf[1000];
|
|
FILE *in;
|
|
char *tpltname;
|
|
char *cp;
|
|
|
|
/* first, see if user specified a template filename on the command line. */
|
|
if (user_templatename != 0) {
|
|
if( access(user_templatename,004)==-1 ){
|
|
fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
|
|
user_templatename);
|
|
lemp->errorcnt++;
|
|
return 0;
|
|
}
|
|
in = fopen(user_templatename,"rb");
|
|
if( in==0 ){
|
|
fprintf(stderr,"Can't open the template file \"%s\".\n",
|
|
user_templatename);
|
|
lemp->errorcnt++;
|
|
return 0;
|
|
}
|
|
return in;
|
|
}
|
|
|
|
cp = strrchr(lemp->filename,'.');
|
|
if( cp ){
|
|
lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
|
|
}else{
|
|
lemon_sprintf(buf,"%s.lt",lemp->filename);
|
|
}
|
|
if( access(buf,004)==0 ){
|
|
tpltname = buf;
|
|
}else if( access(templatename,004)==0 ){
|
|
tpltname = templatename;
|
|
}else{
|
|
tpltname = pathsearch(lemp->argv0,templatename,0);
|
|
}
|
|
if( tpltname==0 ){
|
|
fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
|
|
templatename);
|
|
lemp->errorcnt++;
|
|
return 0;
|
|
}
|
|
in = fopen(tpltname,"rb");
|
|
if( in==0 ){
|
|
fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
|
|
lemp->errorcnt++;
|
|
return 0;
|
|
}
|
|
return in;
|
|
}
|
|
|
|
/* Print a #line directive line to the output file. */
|
|
PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
|
|
{
|
|
fprintf(out,"// line %d \"",lineno);
|
|
while( *filename ){
|
|
if( *filename == '\\' ) putc('\\',out);
|
|
putc(*filename,out);
|
|
filename++;
|
|
}
|
|
fprintf(out,"\"\n");
|
|
}
|
|
|
|
/* Print a string to the file and keep the linenumber up to date */
|
|
PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
|
|
{
|
|
if( str==0 ) return;
|
|
while( *str ){
|
|
putc(*str,out);
|
|
if( *str=='\n' ) (*lineno)++;
|
|
str++;
|
|
}
|
|
if( str[-1]!='\n' ){
|
|
putc('\n',out);
|
|
(*lineno)++;
|
|
}
|
|
if (!lemp->nolinenosflag) {
|
|
(*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** The following routine emits code for the destructor for the
|
|
** symbol sp
|
|
*/
|
|
void emit_destructor_code(
|
|
FILE *out,
|
|
struct symbol *sp,
|
|
struct lemon *lemp,
|
|
int *lineno
|
|
){
|
|
char *cp = 0;
|
|
|
|
if( sp->type==TERMINAL ){
|
|
cp = lemp->tokendest;
|
|
if( cp==0 ) return;
|
|
fprintf(out,"{\n"); (*lineno)++;
|
|
}else if( sp->destructor ){
|
|
cp = sp->destructor;
|
|
fprintf(out,"{\n"); (*lineno)++;
|
|
if( !lemp->nolinenosflag ){
|
|
(*lineno)++;
|
|
tplt_linedir(out,sp->destLineno,lemp->filename);
|
|
}
|
|
}else if( lemp->vardest ){
|
|
cp = lemp->vardest;
|
|
if( cp==0 ) return;
|
|
fprintf(out,"{\n"); (*lineno)++;
|
|
}else{
|
|
assert( 0 ); /* Cannot happen */
|
|
}
|
|
for(; *cp; cp++){
|
|
if( *cp=='$' && cp[1]=='$' ){
|
|
fprintf(out,"(yypminor->yy%d)",sp->dtnum);
|
|
cp++;
|
|
continue;
|
|
}
|
|
if( *cp=='\n' ) (*lineno)++;
|
|
fputc(*cp,out);
|
|
}
|
|
fprintf(out,"\n"); (*lineno)++;
|
|
if (!lemp->nolinenosflag) {
|
|
(*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
|
|
}
|
|
fprintf(out,"}\n"); (*lineno)++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE (non-zero) if the given symbol has a destructor.
|
|
*/
|
|
int has_destructor(struct symbol *sp, struct lemon *lemp)
|
|
{
|
|
int ret;
|
|
if( sp->type==TERMINAL ){
|
|
ret = lemp->tokendest!=0;
|
|
}else{
|
|
ret = lemp->vardest!=0 || sp->destructor!=0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
** Append text to a dynamically allocated string. If zText is 0 then
|
|
** reset the string to be empty again. Always return the complete text
|
|
** of the string (which is overwritten with each call).
|
|
**
|
|
** n bytes of zText are stored. If n==0 then all of zText up to the first
|
|
** \000 terminator is stored. zText can contain up to two instances of
|
|
** %d. The values of p1 and p2 are written into the first and second
|
|
** %d.
|
|
**
|
|
** If n==-1, then the previous character is overwritten.
|
|
*/
|
|
PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
|
|
static char empty[1] = { 0 };
|
|
static char *z = 0;
|
|
static int alloced = 0;
|
|
static int used = 0;
|
|
int c;
|
|
char zInt[40];
|
|
if( zText==0 ){
|
|
if( used==0 && z!=0 ) z[0] = 0;
|
|
used = 0;
|
|
return z;
|
|
}
|
|
if( n<=0 ){
|
|
if( n<0 ){
|
|
used += n;
|
|
assert( used>=0 );
|
|
}
|
|
n = lemonStrlen(zText);
|
|
}
|
|
if( (int) (n+sizeof(zInt)*2+used) >= alloced ){
|
|
alloced = n + sizeof(zInt)*2 + used + 200;
|
|
z = (char *) realloc(z, alloced);
|
|
}
|
|
if( z==0 ) return empty;
|
|
while( n-- > 0 ){
|
|
c = *(zText++);
|
|
if( c=='%' && n>0 && zText[0]=='d' ){
|
|
lemon_sprintf(zInt, "%d", p1);
|
|
p1 = p2;
|
|
lemon_strcpy(&z[used], zInt);
|
|
used += lemonStrlen(&z[used]);
|
|
zText++;
|
|
n--;
|
|
}else{
|
|
z[used++] = (char)c;
|
|
}
|
|
}
|
|
z[used] = 0;
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
** Write and transform the rp->code string so that symbols are expanded.
|
|
** Populate the rp->codePrefix and rp->codeSuffix strings, as appropriate.
|
|
**
|
|
** Return 1 if the expanded code requires that "yylhsminor" local variable
|
|
** to be defined.
|
|
*/
|
|
PRIVATE int translate_code(struct lemon *lemp, struct rule *rp){
|
|
char *cp, *xp;
|
|
int i;
|
|
int rc = 0; /* True if yylhsminor is used */
|
|
int dontUseRhs0 = 0; /* If true, use of left-most RHS label is illegal */
|
|
const char *zSkip = 0; /* The zOvwrt comment within rp->code, or NULL */
|
|
char lhsused = 0; /* True if the LHS element has been used */
|
|
char lhsdirect; /* True if LHS writes directly into stack */
|
|
char used[MAXRHS]; /* True for each RHS element which is used */
|
|
char zLhs[50]; /* Convert the LHS symbol into this string */
|
|
char zOvwrt[900]; /* Comment that to allow LHS to overwrite RHS */
|
|
|
|
for(i=0; i<rp->nrhs; i++) used[i] = 0;
|
|
lhsused = 0;
|
|
|
|
if( rp->code==0 ){
|
|
static char newlinestr[2] = { '\n', '\0' };
|
|
rp->code = newlinestr;
|
|
rp->line = rp->ruleline;
|
|
rp->noCode = 1;
|
|
}else{
|
|
rp->noCode = 0;
|
|
}
|
|
|
|
|
|
if( rp->nrhs==0 ){
|
|
/* If there are no RHS symbols, then writing directly to the LHS is ok */
|
|
lhsdirect = 1;
|
|
}else if( rp->rhsalias[0]==0 ){
|
|
/* The left-most RHS symbol has no value. LHS direct is ok. But
|
|
** we have to call the distructor on the RHS symbol first. */
|
|
lhsdirect = 1;
|
|
if( has_destructor(rp->rhs[0],lemp) ){
|
|
append_str(0,0,0,0);
|
|
append_str(" this.yy_destructor(%d, this.yystack[this.yyidx + %d].minor);\n", 0,
|
|
rp->rhs[0]->index,1-rp->nrhs);
|
|
rp->codePrefix = Strsafe(append_str(0,0,0,0));
|
|
rp->noCode = 0;
|
|
}
|
|
}else if( rp->lhsalias==0 ){
|
|
/* There is no LHS value symbol. */
|
|
lhsdirect = 1;
|
|
}else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){
|
|
/* The LHS symbol and the left-most RHS symbol are the same, so
|
|
** direct writing is allowed */
|
|
lhsdirect = 1;
|
|
lhsused = 1;
|
|
used[0] = 1;
|
|
if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){
|
|
ErrorMsg(lemp->filename,rp->ruleline,
|
|
"%s(%s) and %s(%s) share the same label but have "
|
|
"different datatypes.",
|
|
rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]);
|
|
lemp->errorcnt++;
|
|
}
|
|
}else{
|
|
lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/",
|
|
rp->lhsalias, rp->rhsalias[0]);
|
|
zSkip = strstr(rp->code, zOvwrt);
|
|
if( zSkip!=0 ){
|
|
/* The code contains a special comment that indicates that it is safe
|
|
** for the LHS label to overwrite left-most RHS label. */
|
|
lhsdirect = 1;
|
|
}else{
|
|
lhsdirect = 0;
|
|
}
|
|
}
|
|
if( lhsdirect ){
|
|
sprintf(zLhs, "this.yystack[this.yyidx + %d].minor",1-rp->nrhs/*,rp->lhs->dtnum*/);
|
|
}else{
|
|
rc = 1;
|
|
sprintf(zLhs, "yylhsminor"/*,rp->lhs->dtnum*/);
|
|
}
|
|
|
|
append_str(0,0,0,0);
|
|
|
|
/* This const cast is wrong but harmless, if we're careful. */
|
|
for(cp=(char *)rp->code; *cp; cp++){
|
|
if( cp==zSkip ){
|
|
append_str(zOvwrt,0,0,0);
|
|
cp += lemonStrlen(zOvwrt)-1;
|
|
dontUseRhs0 = 1;
|
|
continue;
|
|
}
|
|
if( ISALPHA(*cp) && (cp==rp->code || (!ISALNUM(cp[-1]) && cp[-1]!='_')) ){
|
|
char saved;
|
|
for(xp= &cp[1]; ISALNUM(*xp) || *xp=='_'; xp++);
|
|
saved = *xp;
|
|
*xp = 0;
|
|
if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
|
|
append_str(zLhs,0,0,0);
|
|
cp = xp;
|
|
lhsused = 1;
|
|
}else{
|
|
for(i=0; i<rp->nrhs; i++){
|
|
if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
|
|
if( i==0 && dontUseRhs0 ){
|
|
ErrorMsg(lemp->filename,rp->ruleline,
|
|
"Label %s used after '%s'.",
|
|
rp->rhsalias[0], zOvwrt);
|
|
lemp->errorcnt++;
|
|
}else if( cp!=rp->code && cp[-1]=='@' ){
|
|
/* If the argument is of the form @X then substituted
|
|
** the token number of X, not the value of X */
|
|
append_str("this.yystack[this.yyidx + %d].major",-1,i-rp->nrhs+1,0);
|
|
}else{
|
|
struct symbol *sp = rp->rhs[i];
|
|
int dtnum;
|
|
if( sp->type==MULTITERMINAL ){
|
|
dtnum = sp->subsym[0]->dtnum;
|
|
}else{
|
|
dtnum = sp->dtnum;
|
|
}
|
|
append_str("this.yystack[this.yyidx + %d].minor",0,i-rp->nrhs+1, dtnum);
|
|
}
|
|
cp = xp;
|
|
used[i] = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
*xp = saved;
|
|
}
|
|
append_str(cp, 1, 0, 0);
|
|
} /* End loop */
|
|
|
|
/* Main code generation completed */
|
|
cp = append_str(0,0,0,0);
|
|
if( cp && cp[0] ) rp->code = Strsafe(cp);
|
|
append_str(0,0,0,0);
|
|
|
|
/* Check to make sure the LHS has been used */
|
|
if( rp->lhsalias && !lhsused ){
|
|
ErrorMsg(lemp->filename,rp->ruleline,
|
|
"Label \"%s\" for \"%s(%s)\" is never used.",
|
|
rp->lhsalias,rp->lhs->name,rp->lhsalias);
|
|
lemp->errorcnt++;
|
|
}
|
|
|
|
/* Generate destructor code for RHS minor values which are not referenced.
|
|
** Generate error messages for unused labels and duplicate labels.
|
|
*/
|
|
for(i=0; i<rp->nrhs; i++){
|
|
if( rp->rhsalias[i] ){
|
|
if( i>0 ){
|
|
int j;
|
|
if( rp->lhsalias && strcmp(rp->lhsalias,rp->rhsalias[i])==0 ){
|
|
ErrorMsg(lemp->filename,rp->ruleline,
|
|
"%s(%s) has the same label as the LHS but is not the left-most "
|
|
"symbol on the RHS.",
|
|
rp->rhs[i]->name, rp->rhsalias);
|
|
lemp->errorcnt++;
|
|
}
|
|
for(j=0; j<i; j++){
|
|
if( rp->rhsalias[j] && strcmp(rp->rhsalias[j],rp->rhsalias[i])==0 ){
|
|
ErrorMsg(lemp->filename,rp->ruleline,
|
|
"Label %s used for multiple symbols on the RHS of a rule.",
|
|
rp->rhsalias[i]);
|
|
lemp->errorcnt++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if( !used[i] ){
|
|
ErrorMsg(lemp->filename,rp->ruleline,
|
|
"Label %s for \"%s(%s)\" is never used.",
|
|
rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
|
|
lemp->errorcnt++;
|
|
}
|
|
}else if( i>0 && has_destructor(rp->rhs[i],lemp) ){
|
|
append_str(" this.yy_destructor(%d, this.yystack[this.yyidx + %d].minor);\n", 0,
|
|
rp->rhs[i]->index,i-rp->nrhs+1);
|
|
}
|
|
}
|
|
|
|
/* If unable to write LHS values directly into the stack, write the
|
|
** saved LHS value now. */
|
|
if( lhsdirect==0 ){
|
|
append_str(" this.yystack[this.yyidx + %d].minor = ", 0, 1-rp->nrhs, rp->lhs->dtnum);
|
|
append_str(zLhs, 0, 0, 0);
|
|
append_str(";\n", 0, 0, 0);
|
|
}
|
|
|
|
/* Suffix code generation complete */
|
|
cp = append_str(0,0,0,0);
|
|
if( cp && cp[0] ){
|
|
rp->codeSuffix = Strsafe(cp);
|
|
rp->noCode = 0;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Generate code which executes when the rule "rp" is reduced. Write
|
|
** the code to "out". Make sure lineno stays up-to-date.
|
|
*/
|
|
PRIVATE void emit_code(
|
|
FILE *out,
|
|
struct rule *rp,
|
|
struct lemon *lemp,
|
|
int *lineno
|
|
){
|
|
const char *cp;
|
|
|
|
/* Setup code prior to the #line directive */
|
|
if( rp->codePrefix && rp->codePrefix[0] ){
|
|
fprintf(out, "{%s", rp->codePrefix);
|
|
for(cp=rp->codePrefix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
|
|
}
|
|
|
|
/* Generate code to do the reduce action */
|
|
if( rp->code ){
|
|
if( !lemp->nolinenosflag ){
|
|
(*lineno)++;
|
|
tplt_linedir(out,rp->line,lemp->filename);
|
|
}
|
|
fprintf(out,"{%s",rp->code);
|
|
for(cp=rp->code; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
|
|
fprintf(out,"}\n"); (*lineno)++;
|
|
if( !lemp->nolinenosflag ){
|
|
(*lineno)++;
|
|
tplt_linedir(out,*lineno,lemp->outname);
|
|
}
|
|
}
|
|
|
|
/* Generate breakdown code that occurs after the #line directive */
|
|
if( rp->codeSuffix && rp->codeSuffix[0] ){
|
|
fprintf(out, "%s", rp->codeSuffix);
|
|
for(cp=rp->codeSuffix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
|
|
}
|
|
|
|
if( rp->codePrefix ){
|
|
fprintf(out, "}\n"); (*lineno)++;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Print the definition of the union used for the parser's data stack.
|
|
** This union contains fields for every possible data type for tokens
|
|
** and nonterminals. In the process of computing and printing this
|
|
** union, also set the ".dtnum" field of every terminal and nonterminal
|
|
** symbol.
|
|
*/
|
|
void print_stack_union(
|
|
FILE *out, /* The output stream */
|
|
struct lemon *lemp, /* The main info structure for this parser */
|
|
int *plineno, /* Pointer to the line number */
|
|
int mhflag /* True if generating makeheaders output */
|
|
){
|
|
int lineno = *plineno; /* The line number of the output */
|
|
char **types; /* A hash table of datatypes */
|
|
int arraysize; /* Size of the "types" array */
|
|
int maxdtlength; /* Maximum length of any ".datatype" field. */
|
|
char *stddt; /* Standardized name for a datatype */
|
|
int i,j; /* Loop counters */
|
|
unsigned hash; /* For hashing the name of a type */
|
|
const char *name; /* Name of the parser */
|
|
|
|
/* Allocate and initialize types[] and allocate stddt[] */
|
|
arraysize = lemp->nsymbol * 2;
|
|
types = (char**)calloc( arraysize, sizeof(char*) );
|
|
if( types==0 ){
|
|
fprintf(stderr,"Out of memory.\n");
|
|
exit(1);
|
|
}
|
|
for(i=0; i<arraysize; i++) types[i] = 0;
|
|
maxdtlength = 0;
|
|
if( lemp->vartype ){
|
|
maxdtlength = lemonStrlen(lemp->vartype);
|
|
}
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
int len;
|
|
struct symbol *sp = lemp->symbols[i];
|
|
if( sp->datatype==0 ) continue;
|
|
len = lemonStrlen(sp->datatype);
|
|
if( len>maxdtlength ) maxdtlength = len;
|
|
}
|
|
stddt = (char*)malloc( maxdtlength*2 + 1 );
|
|
if( stddt==0 ){
|
|
fprintf(stderr,"Out of memory.\n");
|
|
exit(1);
|
|
}
|
|
|
|
/* Build a hash table of datatypes. The ".dtnum" field of each symbol
|
|
** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
|
|
** used for terminal symbols. If there is no %default_type defined then
|
|
** 0 is also used as the .dtnum value for nonterminals which do not specify
|
|
** a datatype using the %type directive.
|
|
*/
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
struct symbol *sp = lemp->symbols[i];
|
|
char *cp;
|
|
if( sp==lemp->errsym ){
|
|
sp->dtnum = arraysize+1;
|
|
continue;
|
|
}
|
|
if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
|
|
sp->dtnum = 0;
|
|
continue;
|
|
}
|
|
cp = sp->datatype;
|
|
if( cp==0 ) cp = lemp->vartype;
|
|
j = 0;
|
|
while( ISSPACE(*cp) ) cp++;
|
|
while( *cp ) stddt[j++] = *cp++;
|
|
while( j>0 && ISSPACE(stddt[j-1]) ) j--;
|
|
stddt[j] = 0;
|
|
if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
|
|
sp->dtnum = 0;
|
|
continue;
|
|
}
|
|
hash = 0;
|
|
for(j=0; stddt[j]; j++){
|
|
hash = hash*53 + stddt[j];
|
|
}
|
|
hash = (hash & 0x7fffffff)%arraysize;
|
|
while( types[hash] ){
|
|
if( strcmp(types[hash],stddt)==0 ){
|
|
sp->dtnum = hash + 1;
|
|
break;
|
|
}
|
|
hash++;
|
|
if( hash>=(unsigned)arraysize ) hash = 0;
|
|
}
|
|
if( types[hash]==0 ){
|
|
sp->dtnum = hash + 1;
|
|
types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
|
|
if( types[hash]==0 ){
|
|
fprintf(stderr,"Out of memory.\n");
|
|
exit(1);
|
|
}
|
|
lemon_strcpy(types[hash],stddt);
|
|
}
|
|
}
|
|
|
|
/* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
|
|
/*
|
|
name = lemp->name ? lemp->name : "Parse";
|
|
lineno = *plineno;
|
|
if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
|
|
fprintf(out,"#define %sTOKENTYPE %s\n",name,
|
|
lemp->tokentype?lemp->tokentype:"void*"); lineno++;
|
|
if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
|
|
fprintf(out,"typedef union {\n"); lineno++;
|
|
fprintf(out," int yyinit;\n"); lineno++;
|
|
fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++;
|
|
for(i=0; i<arraysize; i++){
|
|
if( types[i]==0 ) continue;
|
|
fprintf(out," %s yy%d;\n",types[i],i+1); lineno++;
|
|
free(types[i]);
|
|
}
|
|
if( lemp->errsym->useCnt ){
|
|
fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++;
|
|
}
|
|
free(stddt);
|
|
free(types);
|
|
fprintf(out,"} YYMINORTYPE;\n"); lineno++;
|
|
*plineno = lineno;
|
|
*/
|
|
}
|
|
|
|
/*
|
|
** Return the name of a C datatype able to represent values between
|
|
** lwr and upr, inclusive. If pnByte!=NULL then also write the sizeof
|
|
** for that type (1, 2, or 4) into *pnByte.
|
|
*/
|
|
static const char *minimum_size_type(int lwr, int upr, int *pnByte){
|
|
const char *zType = "int";
|
|
int nByte = 4;
|
|
if( lwr>=0 ){
|
|
if( upr<=255 ){
|
|
zType = "unsigned char";
|
|
nByte = 1;
|
|
}else if( upr<65535 ){
|
|
zType = "unsigned short int";
|
|
nByte = 2;
|
|
}else{
|
|
zType = "unsigned int";
|
|
nByte = 4;
|
|
}
|
|
}else if( lwr>=-127 && upr<=127 ){
|
|
zType = "signed char";
|
|
nByte = 1;
|
|
}else if( lwr>=-32767 && upr<32767 ){
|
|
zType = "short";
|
|
nByte = 2;
|
|
}
|
|
if( pnByte ) *pnByte = nByte;
|
|
return zType;
|
|
}
|
|
|
|
/*
|
|
** Each state contains a set of token transaction and a set of
|
|
** nonterminal transactions. Each of these sets makes an instance
|
|
** of the following structure. An array of these structures is used
|
|
** to order the creation of entries in the yy_action[] table.
|
|
*/
|
|
struct axset {
|
|
struct state *stp; /* A pointer to a state */
|
|
int isTkn; /* True to use tokens. False for non-terminals */
|
|
int nAction; /* Number of actions */
|
|
int iOrder; /* Original order of action sets */
|
|
};
|
|
|
|
/*
|
|
** Compare to axset structures for sorting purposes
|
|
*/
|
|
static int axset_compare(const void *a, const void *b){
|
|
struct axset *p1 = (struct axset*)a;
|
|
struct axset *p2 = (struct axset*)b;
|
|
int c;
|
|
c = p2->nAction - p1->nAction;
|
|
if( c==0 ){
|
|
c = p1->iOrder - p2->iOrder;
|
|
}
|
|
assert( c!=0 || p1==p2 );
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
** Write text on "out" that describes the rule "rp".
|
|
*/
|
|
static void writeRuleText(FILE *out, struct rule *rp){
|
|
int j;
|
|
fprintf(out,"%s ::=", rp->lhs->name);
|
|
for(j=0; j<rp->nrhs; j++){
|
|
struct symbol *sp = rp->rhs[j];
|
|
if( sp->type!=MULTITERMINAL ){
|
|
fprintf(out," %s", sp->name);
|
|
}else{
|
|
int k;
|
|
fprintf(out," %s", sp->subsym[0]->name);
|
|
for(k=1; k<sp->nsubsym; k++){
|
|
fprintf(out,"|%s",sp->subsym[k]->name);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Generate C source code for the parser */
|
|
void ReportTable(
|
|
struct lemon *lemp,
|
|
int mhflag /* Output in makeheaders format if true */
|
|
){
|
|
FILE *out, *in;
|
|
char line[LINESIZE];
|
|
int lineno;
|
|
struct state *stp;
|
|
struct action *ap;
|
|
struct rule *rp;
|
|
struct acttab *pActtab;
|
|
int i, j, n, sz;
|
|
int szActionType; /* sizeof(YYACTIONTYPE) */
|
|
int szCodeType; /* sizeof(YYCODETYPE) */
|
|
const char *name;
|
|
int mnTknOfst, mxTknOfst;
|
|
int mnNtOfst, mxNtOfst;
|
|
struct axset *ax;
|
|
|
|
in = tplt_open(lemp);
|
|
if( in==0 ) return;
|
|
out = file_open(lemp,".js","wb");
|
|
if( out==0 ){
|
|
fclose(in);
|
|
return;
|
|
}
|
|
lineno = 1;
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate the include code, if any */
|
|
tplt_print(out,lemp,lemp->include,&lineno);
|
|
/*
|
|
if( mhflag ){
|
|
char *incName = file_makename(lemp, ".h");
|
|
fprintf(out,"#include \"%s\"\n", incName); lineno++;
|
|
free(incName);
|
|
}
|
|
*/
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate #defines for all tokens */
|
|
//if( mhflag ){
|
|
const char *prefix;
|
|
//fprintf(out,"#if INTERFACE\n"); lineno++;
|
|
if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
|
|
else prefix = "";
|
|
for(i=1; i<lemp->nterminal; i++){
|
|
fprintf(out,"this.%s%-30s = %2d;\n",prefix,lemp->symbols[i]->name,i);
|
|
lineno++;
|
|
}
|
|
//fprintf(out,"#endif\n"); lineno++;
|
|
//}
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate the defines */
|
|
//fprintf(out,"#define YYCODETYPE %s\n",
|
|
// minimum_size_type(0, lemp->nsymbol+1, &szCodeType)); lineno++;
|
|
fprintf(out,"this.YYNOCODE = %d;\n",lemp->nsymbol+1); lineno++;
|
|
//fprintf(out,"#define YYACTIONTYPE %s\n",
|
|
// minimum_size_type(0,lemp->nstate+lemp->nrule*2+5,&szActionType)); lineno++;
|
|
if( lemp->wildcard ){
|
|
fprintf(out,"this.YYWILDCARD = %d;\n",
|
|
lemp->wildcard->index); lineno++;
|
|
}
|
|
print_stack_union(out,lemp,&lineno,mhflag);
|
|
//fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
|
|
if( lemp->stacksize ){
|
|
fprintf(out,"this.YYSTACKDEPTH = %s;\n",lemp->stacksize); lineno++;
|
|
}else{
|
|
fprintf(out,"this.YYSTACKDEPTH = 100;\n"); lineno++;
|
|
}
|
|
//fprintf(out, "#endif\n"); lineno++;
|
|
/*
|
|
if( mhflag ){
|
|
fprintf(out,"#if INTERFACE\n"); lineno++;
|
|
}
|
|
name = lemp->name ? lemp->name : "Parse";
|
|
if( lemp->arg && lemp->arg[0] ){
|
|
i = lemonStrlen(lemp->arg);
|
|
while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--;
|
|
while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
|
|
fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++;
|
|
fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++;
|
|
fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
|
|
name,lemp->arg,&lemp->arg[i]); lineno++;
|
|
fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
|
|
name,&lemp->arg[i],&lemp->arg[i]); lineno++;
|
|
}else{
|
|
fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
|
|
fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
|
|
fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
|
|
fprintf(out,"#define %sARG_STORE\n",name); lineno++;
|
|
}
|
|
if( mhflag ){
|
|
fprintf(out,"#endif\n"); lineno++;
|
|
}
|
|
*/
|
|
if( lemp->errsym->useCnt ){
|
|
fprintf(out,"this.YYERRORSYMBOL = %d;\n",lemp->errsym->index); lineno++;
|
|
// fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
|
|
}
|
|
fprintf(out,"this.YYFALLBACK = %s;\n", lemp->has_fallback ? "true" : "false"); lineno++;
|
|
|
|
/* Compute the action table, but do not output it yet. The action
|
|
** table must be computed before generating the YYNSTATE macro because
|
|
** we need to know how many states can be eliminated.
|
|
*/
|
|
ax = (struct axset *) calloc(lemp->nxstate*2, sizeof(ax[0]));
|
|
if( ax==0 ){
|
|
fprintf(stderr,"malloc failed\n");
|
|
exit(1);
|
|
}
|
|
for(i=0; i<lemp->nxstate; i++){
|
|
stp = lemp->sorted[i];
|
|
ax[i*2].stp = stp;
|
|
ax[i*2].isTkn = 1;
|
|
ax[i*2].nAction = stp->nTknAct;
|
|
ax[i*2+1].stp = stp;
|
|
ax[i*2+1].isTkn = 0;
|
|
ax[i*2+1].nAction = stp->nNtAct;
|
|
}
|
|
mxTknOfst = mnTknOfst = 0;
|
|
mxNtOfst = mnNtOfst = 0;
|
|
/* In an effort to minimize the action table size, use the heuristic
|
|
** of placing the largest action sets first */
|
|
for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i;
|
|
qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare);
|
|
pActtab = acttab_alloc();
|
|
for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){
|
|
stp = ax[i].stp;
|
|
if( ax[i].isTkn ){
|
|
for(ap=stp->ap; ap; ap=ap->next){
|
|
int action;
|
|
if( ap->sp->index>=lemp->nterminal ) continue;
|
|
action = compute_action(lemp, ap);
|
|
if( action<0 ) continue;
|
|
acttab_action(pActtab, ap->sp->index, action);
|
|
}
|
|
stp->iTknOfst = acttab_insert(pActtab);
|
|
if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
|
|
if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
|
|
}else{
|
|
for(ap=stp->ap; ap; ap=ap->next){
|
|
int action;
|
|
if( ap->sp->index<lemp->nterminal ) continue;
|
|
if( ap->sp->index==lemp->nsymbol ) continue;
|
|
action = compute_action(lemp, ap);
|
|
if( action<0 ) continue;
|
|
acttab_action(pActtab, ap->sp->index, action);
|
|
}
|
|
stp->iNtOfst = acttab_insert(pActtab);
|
|
if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
|
|
if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
|
|
}
|
|
#if 0 /* Uncomment for a trace of how the yy_action[] table fills out */
|
|
{ int jj, nn;
|
|
for(jj=nn=0; jj<pActtab->nAction; jj++){
|
|
if( pActtab->aAction[jj].action<0 ) nn++;
|
|
}
|
|
printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n",
|
|
i, stp->statenum, ax[i].isTkn ? "Token" : "Var ",
|
|
ax[i].nAction, pActtab->nAction, nn);
|
|
}
|
|
#endif
|
|
}
|
|
free(ax);
|
|
|
|
/* Mark rules that are actually used for reduce actions after all
|
|
** optimizations have been applied
|
|
*/
|
|
for(rp=lemp->rule; rp; rp=rp->next) rp->doesReduce = LEMON_FALSE;
|
|
for(i=0; i<lemp->nxstate; i++){
|
|
for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
|
|
if( ap->type==REDUCE || ap->type==SHIFTREDUCE ){
|
|
ap->x.rp->doesReduce = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Finish rendering the constants now that the action table has
|
|
** been computed */
|
|
fprintf(out,"this.YYNSTATE = %d;\n",lemp->nxstate); lineno++;
|
|
fprintf(out,"this.YYNRULE = %d;\n",lemp->nrule); lineno++;
|
|
fprintf(out,"this.YY_MAX_SHIFT = %d;\n",lemp->nxstate-1); lineno++;
|
|
fprintf(out,"this.YY_MIN_SHIFTREDUCE = %d;\n",lemp->nstate); lineno++;
|
|
i = lemp->nstate + lemp->nrule;
|
|
fprintf(out,"this.YY_MAX_SHIFTREDUCE = %d;\n", i-1); lineno++;
|
|
fprintf(out,"this.YY_MIN_REDUCE = %d;\n", i); lineno++;
|
|
i = lemp->nstate + lemp->nrule*2;
|
|
fprintf(out,"this.YY_MAX_REDUCE = %d;\n", i-1); lineno++;
|
|
fprintf(out,"this.YY_ERROR_ACTION = %d;\n", i); lineno++;
|
|
fprintf(out,"this.YY_ACCEPT_ACTION = %d;\n", i+1); lineno++;
|
|
fprintf(out,"this.YY_NO_ACTION = %d;\n", i+2); lineno++;
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Now output the action table and its associates:
|
|
**
|
|
** yy_action[] A single table containing all actions.
|
|
** yy_lookahead[] A table containing the lookahead for each entry in
|
|
** yy_action. Used to detect hash collisions.
|
|
** yy_shift_ofst[] For each state, the offset into yy_action for
|
|
** shifting terminals.
|
|
** yy_reduce_ofst[] For each state, the offset into yy_action for
|
|
** shifting non-terminals after a reduce.
|
|
** yy_default[] Default action for each state.
|
|
*/
|
|
|
|
/* Output the yy_action table */
|
|
lemp->nactiontab = n = acttab_size(pActtab);
|
|
lemp->tablesize += n*szActionType;
|
|
fprintf(out,"this.yy_action = [\n"); lineno++;
|
|
for(i=j=0; i<n; i++){
|
|
int action = acttab_yyaction(pActtab, i);
|
|
if( action<0 ) action = lemp->nstate + lemp->nrule + 2;
|
|
if( j==0 ) fprintf(out," /* %5d */ ", i);
|
|
fprintf(out, " %4d,", action);
|
|
if( j==9 || i==n-1 ){
|
|
fprintf(out, "\n"); lineno++;
|
|
j = 0;
|
|
}else{
|
|
j++;
|
|
}
|
|
}
|
|
fprintf(out, "];\n"); lineno++;
|
|
|
|
/* Output the yy_lookahead table */
|
|
lemp->tablesize += n*szCodeType;
|
|
fprintf(out,"this.yy_lookahead = [\n"); lineno++;
|
|
for(i=j=0; i<n; i++){
|
|
int la = acttab_yylookahead(pActtab, i);
|
|
if( la<0 ) la = lemp->nsymbol;
|
|
if( j==0 ) fprintf(out," /* %5d */ ", i);
|
|
fprintf(out, " %4d,", la);
|
|
if( j==9 || i==n-1 ){
|
|
fprintf(out, "\n"); lineno++;
|
|
j = 0;
|
|
}else{
|
|
j++;
|
|
}
|
|
}
|
|
fprintf(out, "];\n"); lineno++;
|
|
|
|
/* Output the yy_shift_ofst[] table */
|
|
n = lemp->nxstate;
|
|
while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
|
|
fprintf(out, "this.YY_SHIFT_USE_DFLT = %d;\n", lemp->nactiontab); lineno++;
|
|
fprintf(out, "this.YY_SHIFT_COUNT = %d;\n", n-1); lineno++;
|
|
fprintf(out, "this.YY_SHIFT_MIN = %d;\n", mnTknOfst); lineno++;
|
|
fprintf(out, "this.YY_SHIFT_MAX = %d;\n", mxTknOfst); lineno++;
|
|
fprintf(out, "this.yy_shift_ofst = [\n"/*,
|
|
minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz)*/);
|
|
lineno++;
|
|
lemp->tablesize += n*sz;
|
|
for(i=j=0; i<n; i++){
|
|
int ofst;
|
|
stp = lemp->sorted[i];
|
|
ofst = stp->iTknOfst;
|
|
if( ofst==NO_OFFSET ) ofst = lemp->nactiontab;
|
|
if( j==0 ) fprintf(out," /* %5d */ ", i);
|
|
fprintf(out, " %4d,", ofst);
|
|
if( j==9 || i==n-1 ){
|
|
fprintf(out, "\n"); lineno++;
|
|
j = 0;
|
|
}else{
|
|
j++;
|
|
}
|
|
}
|
|
fprintf(out, "];\n"); lineno++;
|
|
|
|
/* Output the yy_reduce_ofst[] table */
|
|
fprintf(out, "this.YY_REDUCE_USE_DFLT = %d;\n", mnNtOfst-1); lineno++;
|
|
n = lemp->nxstate;
|
|
while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
|
|
fprintf(out, "this.YY_REDUCE_COUNT = %d;\n", n-1); lineno++;
|
|
fprintf(out, "this.YY_REDUCE_MIN = %d;\n", mnNtOfst); lineno++;
|
|
fprintf(out, "this.YY_REDUCE_MAX = %d;\n", mxNtOfst); lineno++;
|
|
fprintf(out, "this.yy_reduce_ofst = [\n"/*,
|
|
minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)*/); lineno++;
|
|
lemp->tablesize += n*sz;
|
|
for(i=j=0; i<n; i++){
|
|
int ofst;
|
|
stp = lemp->sorted[i];
|
|
ofst = stp->iNtOfst;
|
|
if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
|
|
if( j==0 ) fprintf(out," /* %5d */ ", i);
|
|
fprintf(out, " %4d,", ofst);
|
|
if( j==9 || i==n-1 ){
|
|
fprintf(out, "\n"); lineno++;
|
|
j = 0;
|
|
}else{
|
|
j++;
|
|
}
|
|
}
|
|
fprintf(out, "];\n"); lineno++;
|
|
|
|
/* Output the default action table */
|
|
fprintf(out, "this.yy_default = [\n"); lineno++;
|
|
n = lemp->nxstate;
|
|
lemp->tablesize += n*szActionType;
|
|
for(i=j=0; i<n; i++){
|
|
stp = lemp->sorted[i];
|
|
if( j==0 ) fprintf(out," /* %5d */ ", i);
|
|
fprintf(out, " %4d,", stp->iDfltReduce+lemp->nstate+lemp->nrule);
|
|
if( j==9 || i==n-1 ){
|
|
fprintf(out, "\n"); lineno++;
|
|
j = 0;
|
|
}else{
|
|
j++;
|
|
}
|
|
}
|
|
fprintf(out, "];\n"); lineno++;
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate the table of fallback tokens.
|
|
*/
|
|
if( lemp->has_fallback ){
|
|
int mx = lemp->nterminal - 1;
|
|
while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; }
|
|
lemp->tablesize += (mx+1)*szCodeType;
|
|
for(i=0; i<=mx; i++){
|
|
struct symbol *p = lemp->symbols[i];
|
|
if( p->fallback==0 ){
|
|
fprintf(out, " 0, /* %10s => nothing */\n", p->name);
|
|
}else{
|
|
fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index,
|
|
p->name, p->fallback->name);
|
|
}
|
|
lineno++;
|
|
}
|
|
}
|
|
tplt_xfer(lemp->name, in, out, &lineno);
|
|
|
|
/* Generate a table containing the symbolic name of every symbol
|
|
*/
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name);
|
|
fprintf(out," %-15s",line);
|
|
if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
|
|
}
|
|
if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate a table containing a text string that describes every
|
|
** rule in the rule set of the grammar. This information is used
|
|
** when tracing REDUCE actions.
|
|
*/
|
|
for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
|
|
assert( rp->iRule==i );
|
|
fprintf(out," /* %3d */ \"", i);
|
|
writeRuleText(out, rp);
|
|
fprintf(out,"\",\n"); lineno++;
|
|
}
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate code which executes every time a symbol is popped from
|
|
** the stack while processing errors or while destroying the parser.
|
|
** (In other words, generate the %destructor actions)
|
|
*/
|
|
if( lemp->tokendest ){
|
|
int once = 1;
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
struct symbol *sp = lemp->symbols[i];
|
|
if( sp==0 || sp->type!=TERMINAL ) continue;
|
|
if( once ){
|
|
fprintf(out, " /* TERMINAL Destructor */\n"); lineno++;
|
|
once = 0;
|
|
}
|
|
fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
|
|
}
|
|
for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
|
|
if( i<lemp->nsymbol ){
|
|
emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
|
|
fprintf(out," break;\n"); lineno++;
|
|
}
|
|
}
|
|
if( lemp->vardest ){
|
|
struct symbol *dflt_sp = 0;
|
|
int once = 1;
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
struct symbol *sp = lemp->symbols[i];
|
|
if( sp==0 || sp->type==TERMINAL ||
|
|
sp->index<=0 || sp->destructor!=0 ) continue;
|
|
if( once ){
|
|
fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++;
|
|
once = 0;
|
|
}
|
|
fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
|
|
dflt_sp = sp;
|
|
}
|
|
if( dflt_sp!=0 ){
|
|
emit_destructor_code(out,dflt_sp,lemp,&lineno);
|
|
}
|
|
fprintf(out," break;\n"); lineno++;
|
|
}
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
struct symbol *sp = lemp->symbols[i];
|
|
if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
|
|
if( sp->destLineno<0 ) continue; /* Already emitted */
|
|
fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
|
|
|
|
/* Combine duplicate destructors into a single case */
|
|
for(j=i+1; j<lemp->nsymbol; j++){
|
|
struct symbol *sp2 = lemp->symbols[j];
|
|
if( sp2 && sp2->type!=TERMINAL && sp2->destructor
|
|
&& sp2->dtnum==sp->dtnum
|
|
&& strcmp(sp->destructor,sp2->destructor)==0 ){
|
|
fprintf(out," case %d: /* %s */\n",
|
|
sp2->index, sp2->name); lineno++;
|
|
sp2->destLineno = -1; /* Avoid emitting this destructor again */
|
|
}
|
|
}
|
|
|
|
emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
|
|
fprintf(out," break;\n"); lineno++;
|
|
}
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate code which executes whenever the parser stack overflows */
|
|
tplt_print(out,lemp,lemp->overflow,&lineno);
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate the table of rule information
|
|
**
|
|
** Note: This code depends on the fact that rules are number
|
|
** sequentually beginning with 0.
|
|
*/
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
fprintf(out," { lhs: %d, nrhs: %d },\n",rp->lhs->index,rp->nrhs); lineno++;
|
|
}
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate code which execution during each REDUCE action */
|
|
i = 0;
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
i += translate_code(lemp, rp);
|
|
}
|
|
//if( i ){
|
|
// fprintf(out," var yylhsminor;\n"); lineno++;
|
|
//}
|
|
/* First output rules other than the default: rule */
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
struct rule *rp2; /* Other rules with the same action */
|
|
if( rp->codeEmitted ) continue;
|
|
if( rp->noCode ){
|
|
/* No C code actions, so this will be part of the "default:" rule */
|
|
continue;
|
|
}
|
|
fprintf(out," case %d: /* ", rp->iRule);
|
|
writeRuleText(out, rp);
|
|
fprintf(out, " */\n"); lineno++;
|
|
for(rp2=rp->next; rp2; rp2=rp2->next){
|
|
if( rp2->code==rp->code && rp2->codePrefix==rp->codePrefix
|
|
&& rp2->codeSuffix==rp->codeSuffix ){
|
|
fprintf(out," case %d: /* ", rp2->iRule);
|
|
writeRuleText(out, rp2);
|
|
fprintf(out," */ this.yytestcase(yyruleno==%d);\n", rp2->iRule); lineno++;
|
|
rp2->codeEmitted = 1;
|
|
}
|
|
}
|
|
emit_code(out,rp,lemp,&lineno);
|
|
fprintf(out," break;\n"); lineno++;
|
|
rp->codeEmitted = 1;
|
|
}
|
|
/* Finally, output the default: rule. We choose as the default: all
|
|
** empty actions. */
|
|
fprintf(out," default:\n"); lineno++;
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
if( rp->codeEmitted ) continue;
|
|
assert( rp->noCode );
|
|
fprintf(out," /* (%d) ", rp->iRule);
|
|
writeRuleText(out, rp);
|
|
if( rp->doesReduce ){
|
|
fprintf(out, " */ this.yytestcase(yyruleno==%d);\n", rp->iRule); lineno++;
|
|
}else{
|
|
fprintf(out, " (OPTIMIZED OUT) */ assert(yyruleno!=%d);\n",
|
|
rp->iRule); lineno++;
|
|
}
|
|
}
|
|
fprintf(out," break;\n"); lineno++;
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate code which executes if a parse fails */
|
|
tplt_print(out,lemp,lemp->failure,&lineno);
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate code which executes when a syntax error occurs */
|
|
tplt_print(out,lemp,lemp->error,&lineno);
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate code which executes when the parser accepts its input */
|
|
tplt_print(out,lemp,lemp->accept,&lineno);
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Append any addition code the user desires */
|
|
tplt_print(out,lemp,lemp->extracode,&lineno);
|
|
|
|
fclose(in);
|
|
fclose(out);
|
|
return;
|
|
}
|
|
|
|
/* Generate a header file for the parser */
|
|
void ReportHeader(struct lemon *lemp)
|
|
{
|
|
FILE *out, *in;
|
|
const char *prefix;
|
|
char line[LINESIZE];
|
|
char pattern[LINESIZE];
|
|
int i;
|
|
|
|
if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
|
|
else prefix = "";
|
|
in = file_open(lemp,".h","rb");
|
|
if( in ){
|
|
int nextChar;
|
|
for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
|
|
lemon_sprintf(pattern,"#define %s%-30s %3d\n",
|
|
prefix,lemp->symbols[i]->name,i);
|
|
if( strcmp(line,pattern) ) break;
|
|
}
|
|
nextChar = fgetc(in);
|
|
fclose(in);
|
|
if( i==lemp->nterminal && nextChar==EOF ){
|
|
/* No change in the file. Don't rewrite it. */
|
|
return;
|
|
}
|
|
}
|
|
out = file_open(lemp,".h","wb");
|
|
if( out ){
|
|
for(i=1; i<lemp->nterminal; i++){
|
|
fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i);
|
|
}
|
|
fclose(out);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Reduce the size of the action tables, if possible, by making use
|
|
** of defaults.
|
|
**
|
|
** In this version, we take the most frequent REDUCE action and make
|
|
** it the default. Except, there is no default if the wildcard token
|
|
** is a possible look-ahead.
|
|
*/
|
|
void CompressTables(struct lemon *lemp)
|
|
{
|
|
struct state *stp;
|
|
struct action *ap, *ap2, *nextap;
|
|
struct rule *rp, *rp2, *rbest;
|
|
int nbest, n;
|
|
int i;
|
|
int usesWildcard;
|
|
|
|
for(i=0; i<lemp->nstate; i++){
|
|
stp = lemp->sorted[i];
|
|
nbest = 0;
|
|
rbest = 0;
|
|
usesWildcard = 0;
|
|
|
|
for(ap=stp->ap; ap; ap=ap->next){
|
|
if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
|
|
usesWildcard = 1;
|
|
}
|
|
if( ap->type!=REDUCE ) continue;
|
|
rp = ap->x.rp;
|
|
if( rp->lhsStart ) continue;
|
|
if( rp==rbest ) continue;
|
|
n = 1;
|
|
for(ap2=ap->next; ap2; ap2=ap2->next){
|
|
if( ap2->type!=REDUCE ) continue;
|
|
rp2 = ap2->x.rp;
|
|
if( rp2==rbest ) continue;
|
|
if( rp2==rp ) n++;
|
|
}
|
|
if( n>nbest ){
|
|
nbest = n;
|
|
rbest = rp;
|
|
}
|
|
}
|
|
|
|
/* Do not make a default if the number of rules to default
|
|
** is not at least 1 or if the wildcard token is a possible
|
|
** lookahead.
|
|
*/
|
|
if( nbest<1 || usesWildcard ) continue;
|
|
|
|
|
|
/* Combine matching REDUCE actions into a single default */
|
|
for(ap=stp->ap; ap; ap=ap->next){
|
|
if( ap->type==REDUCE && ap->x.rp==rbest ) break;
|
|
}
|
|
assert( ap );
|
|
ap->sp = Symbol_new("{default}");
|
|
for(ap=ap->next; ap; ap=ap->next){
|
|
if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
|
|
}
|
|
stp->ap = Action_sort(stp->ap);
|
|
|
|
for(ap=stp->ap; ap; ap=ap->next){
|
|
if( ap->type==SHIFT ) break;
|
|
if( ap->type==REDUCE && ap->x.rp!=rbest ) break;
|
|
}
|
|
if( ap==0 ){
|
|
stp->autoReduce = 1;
|
|
stp->pDfltReduce = rbest;
|
|
}
|
|
}
|
|
|
|
/* Make a second pass over all states and actions. Convert
|
|
** every action that is a SHIFT to an autoReduce state into
|
|
** a SHIFTREDUCE action.
|
|
*/
|
|
for(i=0; i<lemp->nstate; i++){
|
|
stp = lemp->sorted[i];
|
|
for(ap=stp->ap; ap; ap=ap->next){
|
|
struct state *pNextState;
|
|
if( ap->type!=SHIFT ) continue;
|
|
pNextState = ap->x.stp;
|
|
if( pNextState->autoReduce && pNextState->pDfltReduce!=0 ){
|
|
ap->type = SHIFTREDUCE;
|
|
ap->x.rp = pNextState->pDfltReduce;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If a SHIFTREDUCE action specifies a rule that has a single RHS term
|
|
** (meaning that the SHIFTREDUCE will land back in the state where it
|
|
** started) and if there is no C-code associated with the reduce action,
|
|
** then we can go ahead and convert the action to be the same as the
|
|
** action for the RHS of the rule.
|
|
*/
|
|
for(i=0; i<lemp->nstate; i++){
|
|
stp = lemp->sorted[i];
|
|
for(ap=stp->ap; ap; ap=nextap){
|
|
nextap = ap->next;
|
|
if( ap->type!=SHIFTREDUCE ) continue;
|
|
rp = ap->x.rp;
|
|
if( rp->noCode==0 ) continue;
|
|
if( rp->nrhs!=1 ) continue;
|
|
#if 1
|
|
/* Only apply this optimization to non-terminals. It would be OK to
|
|
** apply it to terminal symbols too, but that makes the parser tables
|
|
** larger. */
|
|
if( ap->sp->index<lemp->nterminal ) continue;
|
|
#endif
|
|
/* If we reach this point, it means the optimization can be applied */
|
|
nextap = ap;
|
|
for(ap2=stp->ap; ap2 && (ap2==ap || ap2->sp!=rp->lhs); ap2=ap2->next){}
|
|
assert( ap2!=0 );
|
|
ap->spOpt = ap2->sp;
|
|
ap->type = ap2->type;
|
|
ap->x = ap2->x;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Compare two states for sorting purposes. The smaller state is the
|
|
** one with the most non-terminal actions. If they have the same number
|
|
** of non-terminal actions, then the smaller is the one with the most
|
|
** token actions.
|
|
*/
|
|
static int stateResortCompare(const void *a, const void *b){
|
|
const struct state *pA = *(const struct state**)a;
|
|
const struct state *pB = *(const struct state**)b;
|
|
int n;
|
|
|
|
n = pB->nNtAct - pA->nNtAct;
|
|
if( n==0 ){
|
|
n = pB->nTknAct - pA->nTknAct;
|
|
if( n==0 ){
|
|
n = pB->statenum - pA->statenum;
|
|
}
|
|
}
|
|
assert( n!=0 );
|
|
return n;
|
|
}
|
|
|
|
|
|
/*
|
|
** Renumber and resort states so that states with fewer choices
|
|
** occur at the end. Except, keep state 0 as the first state.
|
|
*/
|
|
void ResortStates(struct lemon *lemp)
|
|
{
|
|
int i;
|
|
struct state *stp;
|
|
struct action *ap;
|
|
|
|
for(i=0; i<lemp->nstate; i++){
|
|
stp = lemp->sorted[i];
|
|
stp->nTknAct = stp->nNtAct = 0;
|
|
stp->iDfltReduce = lemp->nrule; /* Init dflt action to "syntax error" */
|
|
stp->iTknOfst = NO_OFFSET;
|
|
stp->iNtOfst = NO_OFFSET;
|
|
for(ap=stp->ap; ap; ap=ap->next){
|
|
int iAction = compute_action(lemp,ap);
|
|
if( iAction>=0 ){
|
|
if( ap->sp->index<lemp->nterminal ){
|
|
stp->nTknAct++;
|
|
}else if( ap->sp->index<lemp->nsymbol ){
|
|
stp->nNtAct++;
|
|
}else{
|
|
assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp );
|
|
stp->iDfltReduce = iAction - lemp->nstate - lemp->nrule;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
|
|
stateResortCompare);
|
|
for(i=0; i<lemp->nstate; i++){
|
|
lemp->sorted[i]->statenum = i;
|
|
}
|
|
lemp->nxstate = lemp->nstate;
|
|
while( lemp->nxstate>1 && lemp->sorted[lemp->nxstate-1]->autoReduce ){
|
|
lemp->nxstate--;
|
|
}
|
|
}
|
|
|
|
|
|
/***************** From the file "set.c" ************************************/
|
|
/*
|
|
** Set manipulation routines for the LEMON parser generator.
|
|
*/
|
|
|
|
static int size = 0;
|
|
|
|
/* Set the set size */
|
|
void SetSize(int n)
|
|
{
|
|
size = n+1;
|
|
}
|
|
|
|
/* Allocate a new set */
|
|
char *SetNew(){
|
|
char *s;
|
|
s = (char*)calloc( size, 1);
|
|
if( s==0 ){
|
|
extern void memory_error();
|
|
memory_error();
|
|
}
|
|
return s;
|
|
}
|
|
|
|
/* Deallocate a set */
|
|
void SetFree(char *s)
|
|
{
|
|
free(s);
|
|
}
|
|
|
|
/* Add a new element to the set. Return TRUE if the element was added
|
|
** and FALSE if it was already there. */
|
|
int SetAdd(char *s, int e)
|
|
{
|
|
int rv;
|
|
assert( e>=0 && e<size );
|
|
rv = s[e];
|
|
s[e] = 1;
|
|
return !rv;
|
|
}
|
|
|
|
/* Add every element of s2 to s1. Return TRUE if s1 changes. */
|
|
int SetUnion(char *s1, char *s2)
|
|
{
|
|
int i, progress;
|
|
progress = 0;
|
|
for(i=0; i<size; i++){
|
|
if( s2[i]==0 ) continue;
|
|
if( s1[i]==0 ){
|
|
progress = 1;
|
|
s1[i] = 1;
|
|
}
|
|
}
|
|
return progress;
|
|
}
|
|
/********************** From the file "table.c" ****************************/
|
|
/*
|
|
** All code in this file has been automatically generated
|
|
** from a specification in the file
|
|
** "table.q"
|
|
** by the associative array code building program "aagen".
|
|
** Do not edit this file! Instead, edit the specification
|
|
** file, then rerun aagen.
|
|
*/
|
|
/*
|
|
** Code for processing tables in the LEMON parser generator.
|
|
*/
|
|
|
|
PRIVATE unsigned strhash(const char *x)
|
|
{
|
|
unsigned h = 0;
|
|
while( *x ) h = h*13 + *(x++);
|
|
return h;
|
|
}
|
|
|
|
/* Works like strdup, sort of. Save a string in malloced memory, but
|
|
** keep strings in a table so that the same string is not in more
|
|
** than one place.
|
|
*/
|
|
const char *Strsafe(const char *y)
|
|
{
|
|
const char *z;
|
|
char *cpy;
|
|
|
|
if( y==0 ) return 0;
|
|
z = Strsafe_find(y);
|
|
if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
|
|
lemon_strcpy(cpy,y);
|
|
z = cpy;
|
|
Strsafe_insert(z);
|
|
}
|
|
MemoryCheck(z);
|
|
return z;
|
|
}
|
|
|
|
/* There is one instance of the following structure for each
|
|
** associative array of type "x1".
|
|
*/
|
|
struct s_x1 {
|
|
int size; /* The number of available slots. */
|
|
/* Must be a power of 2 greater than or */
|
|
/* equal to 1 */
|
|
int count; /* Number of currently slots filled */
|
|
struct s_x1node *tbl; /* The data stored here */
|
|
struct s_x1node **ht; /* Hash table for lookups */
|
|
};
|
|
|
|
/* There is one instance of this structure for every data element
|
|
** in an associative array of type "x1".
|
|
*/
|
|
typedef struct s_x1node {
|
|
const char *data; /* The data */
|
|
struct s_x1node *next; /* Next entry with the same hash */
|
|
struct s_x1node **from; /* Previous link */
|
|
} x1node;
|
|
|
|
/* There is only one instance of the array, which is the following */
|
|
static struct s_x1 *x1a;
|
|
|
|
/* Allocate a new associative array */
|
|
void Strsafe_init(){
|
|
if( x1a ) return;
|
|
x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
|
|
if( x1a ){
|
|
x1a->size = 1024;
|
|
x1a->count = 0;
|
|
x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*));
|
|
if( x1a->tbl==0 ){
|
|
free(x1a);
|
|
x1a = 0;
|
|
}else{
|
|
int i;
|
|
x1a->ht = (x1node**)&(x1a->tbl[1024]);
|
|
for(i=0; i<1024; i++) x1a->ht[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
/* Insert a new record into the array. Return TRUE if successful.
|
|
** Prior data with the same key is NOT overwritten */
|
|
int Strsafe_insert(const char *data)
|
|
{
|
|
x1node *np;
|
|
unsigned h;
|
|
unsigned ph;
|
|
|
|
if( x1a==0 ) return 0;
|
|
ph = strhash(data);
|
|
h = ph & (x1a->size-1);
|
|
np = x1a->ht[h];
|
|
while( np ){
|
|
if( strcmp(np->data,data)==0 ){
|
|
/* An existing entry with the same key is found. */
|
|
/* Fail because overwrite is not allows. */
|
|
return 0;
|
|
}
|
|
np = np->next;
|
|
}
|
|
if( x1a->count>=x1a->size ){
|
|
/* Need to make the hash table bigger */
|
|
int i,arrSize;
|
|
struct s_x1 array;
|
|
array.size = arrSize = x1a->size*2;
|
|
array.count = x1a->count;
|
|
array.tbl = (x1node*)calloc(arrSize, sizeof(x1node) + sizeof(x1node*));
|
|
if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
|
|
array.ht = (x1node**)&(array.tbl[arrSize]);
|
|
for(i=0; i<arrSize; i++) array.ht[i] = 0;
|
|
for(i=0; i<x1a->count; i++){
|
|
x1node *oldnp, *newnp;
|
|
oldnp = &(x1a->tbl[i]);
|
|
h = strhash(oldnp->data) & (arrSize-1);
|
|
newnp = &(array.tbl[i]);
|
|
if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
|
|
newnp->next = array.ht[h];
|
|
newnp->data = oldnp->data;
|
|
newnp->from = &(array.ht[h]);
|
|
array.ht[h] = newnp;
|
|
}
|
|
free(x1a->tbl);
|
|
*x1a = array;
|
|
}
|
|
/* Insert the new data */
|
|
h = ph & (x1a->size-1);
|
|
np = &(x1a->tbl[x1a->count++]);
|
|
np->data = data;
|
|
if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
|
|
np->next = x1a->ht[h];
|
|
x1a->ht[h] = np;
|
|
np->from = &(x1a->ht[h]);
|
|
return 1;
|
|
}
|
|
|
|
/* Return a pointer to data assigned to the given key. Return NULL
|
|
** if no such key. */
|
|
const char *Strsafe_find(const char *key)
|
|
{
|
|
unsigned h;
|
|
x1node *np;
|
|
|
|
if( x1a==0 ) return 0;
|
|
h = strhash(key) & (x1a->size-1);
|
|
np = x1a->ht[h];
|
|
while( np ){
|
|
if( strcmp(np->data,key)==0 ) break;
|
|
np = np->next;
|
|
}
|
|
return np ? np->data : 0;
|
|
}
|
|
|
|
/* Return a pointer to the (terminal or nonterminal) symbol "x".
|
|
** Create a new symbol if this is the first time "x" has been seen.
|
|
*/
|
|
struct symbol *Symbol_new(const char *x)
|
|
{
|
|
struct symbol *sp;
|
|
|
|
sp = Symbol_find(x);
|
|
if( sp==0 ){
|
|
sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
|
|
MemoryCheck(sp);
|
|
sp->name = Strsafe(x);
|
|
sp->type = ISUPPER(*x) ? TERMINAL : NONTERMINAL;
|
|
sp->rule = 0;
|
|
sp->fallback = 0;
|
|
sp->prec = -1;
|
|
sp->assoc = UNK;
|
|
sp->firstset = 0;
|
|
sp->lambda = LEMON_FALSE;
|
|
sp->destructor = 0;
|
|
sp->destLineno = 0;
|
|
sp->datatype = 0;
|
|
sp->useCnt = 0;
|
|
Symbol_insert(sp,sp->name);
|
|
}
|
|
sp->useCnt++;
|
|
return sp;
|
|
}
|
|
|
|
/* Compare two symbols for sorting purposes. Return negative,
|
|
** zero, or positive if a is less then, equal to, or greater
|
|
** than b.
|
|
**
|
|
** Symbols that begin with upper case letters (terminals or tokens)
|
|
** must sort before symbols that begin with lower case letters
|
|
** (non-terminals). And MULTITERMINAL symbols (created using the
|
|
** %token_class directive) must sort at the very end. Other than
|
|
** that, the order does not matter.
|
|
**
|
|
** We find experimentally that leaving the symbols in their original
|
|
** order (the order they appeared in the grammar file) gives the
|
|
** smallest parser tables in SQLite.
|
|
*/
|
|
int Symbolcmpp(const void *_a, const void *_b)
|
|
{
|
|
const struct symbol *a = *(const struct symbol **) _a;
|
|
const struct symbol *b = *(const struct symbol **) _b;
|
|
int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1;
|
|
int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1;
|
|
return i1==i2 ? a->index - b->index : i1 - i2;
|
|
}
|
|
|
|
/* There is one instance of the following structure for each
|
|
** associative array of type "x2".
|
|
*/
|
|
struct s_x2 {
|
|
int size; /* The number of available slots. */
|
|
/* Must be a power of 2 greater than or */
|
|
/* equal to 1 */
|
|
int count; /* Number of currently slots filled */
|
|
struct s_x2node *tbl; /* The data stored here */
|
|
struct s_x2node **ht; /* Hash table for lookups */
|
|
};
|
|
|
|
/* There is one instance of this structure for every data element
|
|
** in an associative array of type "x2".
|
|
*/
|
|
typedef struct s_x2node {
|
|
struct symbol *data; /* The data */
|
|
const char *key; /* The key */
|
|
struct s_x2node *next; /* Next entry with the same hash */
|
|
struct s_x2node **from; /* Previous link */
|
|
} x2node;
|
|
|
|
/* There is only one instance of the array, which is the following */
|
|
static struct s_x2 *x2a;
|
|
|
|
/* Allocate a new associative array */
|
|
void Symbol_init(){
|
|
if( x2a ) return;
|
|
x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
|
|
if( x2a ){
|
|
x2a->size = 128;
|
|
x2a->count = 0;
|
|
x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*));
|
|
if( x2a->tbl==0 ){
|
|
free(x2a);
|
|
x2a = 0;
|
|
}else{
|
|
int i;
|
|
x2a->ht = (x2node**)&(x2a->tbl[128]);
|
|
for(i=0; i<128; i++) x2a->ht[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
/* Insert a new record into the array. Return TRUE if successful.
|
|
** Prior data with the same key is NOT overwritten */
|
|
int Symbol_insert(struct symbol *data, const char *key)
|
|
{
|
|
x2node *np;
|
|
unsigned h;
|
|
unsigned ph;
|
|
|
|
if( x2a==0 ) return 0;
|
|
ph = strhash(key);
|
|
h = ph & (x2a->size-1);
|
|
np = x2a->ht[h];
|
|
while( np ){
|
|
if( strcmp(np->key,key)==0 ){
|
|
/* An existing entry with the same key is found. */
|
|
/* Fail because overwrite is not allows. */
|
|
return 0;
|
|
}
|
|
np = np->next;
|
|
}
|
|
if( x2a->count>=x2a->size ){
|
|
/* Need to make the hash table bigger */
|
|
int i,arrSize;
|
|
struct s_x2 array;
|
|
array.size = arrSize = x2a->size*2;
|
|
array.count = x2a->count;
|
|
array.tbl = (x2node*)calloc(arrSize, sizeof(x2node) + sizeof(x2node*));
|
|
if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
|
|
array.ht = (x2node**)&(array.tbl[arrSize]);
|
|
for(i=0; i<arrSize; i++) array.ht[i] = 0;
|
|
for(i=0; i<x2a->count; i++){
|
|
x2node *oldnp, *newnp;
|
|
oldnp = &(x2a->tbl[i]);
|
|
h = strhash(oldnp->key) & (arrSize-1);
|
|
newnp = &(array.tbl[i]);
|
|
if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
|
|
newnp->next = array.ht[h];
|
|
newnp->key = oldnp->key;
|
|
newnp->data = oldnp->data;
|
|
newnp->from = &(array.ht[h]);
|
|
array.ht[h] = newnp;
|
|
}
|
|
free(x2a->tbl);
|
|
*x2a = array;
|
|
}
|
|
/* Insert the new data */
|
|
h = ph & (x2a->size-1);
|
|
np = &(x2a->tbl[x2a->count++]);
|
|
np->key = key;
|
|
np->data = data;
|
|
if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
|
|
np->next = x2a->ht[h];
|
|
x2a->ht[h] = np;
|
|
np->from = &(x2a->ht[h]);
|
|
return 1;
|
|
}
|
|
|
|
/* Return a pointer to data assigned to the given key. Return NULL
|
|
** if no such key. */
|
|
struct symbol *Symbol_find(const char *key)
|
|
{
|
|
unsigned h;
|
|
x2node *np;
|
|
|
|
if( x2a==0 ) return 0;
|
|
h = strhash(key) & (x2a->size-1);
|
|
np = x2a->ht[h];
|
|
while( np ){
|
|
if( strcmp(np->key,key)==0 ) break;
|
|
np = np->next;
|
|
}
|
|
return np ? np->data : 0;
|
|
}
|
|
|
|
/* Return the n-th data. Return NULL if n is out of range. */
|
|
struct symbol *Symbol_Nth(int n)
|
|
{
|
|
struct symbol *data;
|
|
if( x2a && n>0 && n<=x2a->count ){
|
|
data = x2a->tbl[n-1].data;
|
|
}else{
|
|
data = 0;
|
|
}
|
|
return data;
|
|
}
|
|
|
|
/* Return the size of the array */
|
|
int Symbol_count()
|
|
{
|
|
return x2a ? x2a->count : 0;
|
|
}
|
|
|
|
/* Return an array of pointers to all data in the table.
|
|
** The array is obtained from malloc. Return NULL if memory allocation
|
|
** problems, or if the array is empty. */
|
|
struct symbol **Symbol_arrayof()
|
|
{
|
|
struct symbol **array;
|
|
int i,arrSize;
|
|
if( x2a==0 ) return 0;
|
|
arrSize = x2a->count;
|
|
array = (struct symbol **)calloc(arrSize, sizeof(struct symbol *));
|
|
if( array ){
|
|
for(i=0; i<arrSize; i++) array[i] = x2a->tbl[i].data;
|
|
}
|
|
return array;
|
|
}
|
|
|
|
/* Compare two configurations */
|
|
int Configcmp(const char *_a,const char *_b)
|
|
{
|
|
const struct config *a = (struct config *) _a;
|
|
const struct config *b = (struct config *) _b;
|
|
int x;
|
|
x = a->rp->index - b->rp->index;
|
|
if( x==0 ) x = a->dot - b->dot;
|
|
return x;
|
|
}
|
|
|
|
/* Compare two states */
|
|
PRIVATE int statecmp(struct config *a, struct config *b)
|
|
{
|
|
int rc;
|
|
for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){
|
|
rc = a->rp->index - b->rp->index;
|
|
if( rc==0 ) rc = a->dot - b->dot;
|
|
}
|
|
if( rc==0 ){
|
|
if( a ) rc = 1;
|
|
if( b ) rc = -1;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Hash a state */
|
|
PRIVATE unsigned statehash(struct config *a)
|
|
{
|
|
unsigned h=0;
|
|
while( a ){
|
|
h = h*571 + a->rp->index*37 + a->dot;
|
|
a = a->bp;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
/* Allocate a new state structure */
|
|
struct state *State_new()
|
|
{
|
|
struct state *newstate;
|
|
newstate = (struct state *)calloc(1, sizeof(struct state) );
|
|
MemoryCheck(newstate);
|
|
return newstate;
|
|
}
|
|
|
|
/* There is one instance of the following structure for each
|
|
** associative array of type "x3".
|
|
*/
|
|
struct s_x3 {
|
|
int size; /* The number of available slots. */
|
|
/* Must be a power of 2 greater than or */
|
|
/* equal to 1 */
|
|
int count; /* Number of currently slots filled */
|
|
struct s_x3node *tbl; /* The data stored here */
|
|
struct s_x3node **ht; /* Hash table for lookups */
|
|
};
|
|
|
|
/* There is one instance of this structure for every data element
|
|
** in an associative array of type "x3".
|
|
*/
|
|
typedef struct s_x3node {
|
|
struct state *data; /* The data */
|
|
struct config *key; /* The key */
|
|
struct s_x3node *next; /* Next entry with the same hash */
|
|
struct s_x3node **from; /* Previous link */
|
|
} x3node;
|
|
|
|
/* There is only one instance of the array, which is the following */
|
|
static struct s_x3 *x3a;
|
|
|
|
/* Allocate a new associative array */
|
|
void State_init(){
|
|
if( x3a ) return;
|
|
x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
|
|
if( x3a ){
|
|
x3a->size = 128;
|
|
x3a->count = 0;
|
|
x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*));
|
|
if( x3a->tbl==0 ){
|
|
free(x3a);
|
|
x3a = 0;
|
|
}else{
|
|
int i;
|
|
x3a->ht = (x3node**)&(x3a->tbl[128]);
|
|
for(i=0; i<128; i++) x3a->ht[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
/* Insert a new record into the array. Return TRUE if successful.
|
|
** Prior data with the same key is NOT overwritten */
|
|
int State_insert(struct state *data, struct config *key)
|
|
{
|
|
x3node *np;
|
|
unsigned h;
|
|
unsigned ph;
|
|
|
|
if( x3a==0 ) return 0;
|
|
ph = statehash(key);
|
|
h = ph & (x3a->size-1);
|
|
np = x3a->ht[h];
|
|
while( np ){
|
|
if( statecmp(np->key,key)==0 ){
|
|
/* An existing entry with the same key is found. */
|
|
/* Fail because overwrite is not allows. */
|
|
return 0;
|
|
}
|
|
np = np->next;
|
|
}
|
|
if( x3a->count>=x3a->size ){
|
|
/* Need to make the hash table bigger */
|
|
int i,arrSize;
|
|
struct s_x3 array;
|
|
array.size = arrSize = x3a->size*2;
|
|
array.count = x3a->count;
|
|
array.tbl = (x3node*)calloc(arrSize, sizeof(x3node) + sizeof(x3node*));
|
|
if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
|
|
array.ht = (x3node**)&(array.tbl[arrSize]);
|
|
for(i=0; i<arrSize; i++) array.ht[i] = 0;
|
|
for(i=0; i<x3a->count; i++){
|
|
x3node *oldnp, *newnp;
|
|
oldnp = &(x3a->tbl[i]);
|
|
h = statehash(oldnp->key) & (arrSize-1);
|
|
newnp = &(array.tbl[i]);
|
|
if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
|
|
newnp->next = array.ht[h];
|
|
newnp->key = oldnp->key;
|
|
newnp->data = oldnp->data;
|
|
newnp->from = &(array.ht[h]);
|
|
array.ht[h] = newnp;
|
|
}
|
|
free(x3a->tbl);
|
|
*x3a = array;
|
|
}
|
|
/* Insert the new data */
|
|
h = ph & (x3a->size-1);
|
|
np = &(x3a->tbl[x3a->count++]);
|
|
np->key = key;
|
|
np->data = data;
|
|
if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
|
|
np->next = x3a->ht[h];
|
|
x3a->ht[h] = np;
|
|
np->from = &(x3a->ht[h]);
|
|
return 1;
|
|
}
|
|
|
|
/* Return a pointer to data assigned to the given key. Return NULL
|
|
** if no such key. */
|
|
struct state *State_find(struct config *key)
|
|
{
|
|
unsigned h;
|
|
x3node *np;
|
|
|
|
if( x3a==0 ) return 0;
|
|
h = statehash(key) & (x3a->size-1);
|
|
np = x3a->ht[h];
|
|
while( np ){
|
|
if( statecmp(np->key,key)==0 ) break;
|
|
np = np->next;
|
|
}
|
|
return np ? np->data : 0;
|
|
}
|
|
|
|
/* Return an array of pointers to all data in the table.
|
|
** The array is obtained from malloc. Return NULL if memory allocation
|
|
** problems, or if the array is empty. */
|
|
struct state **State_arrayof()
|
|
{
|
|
struct state **array;
|
|
int i,arrSize;
|
|
if( x3a==0 ) return 0;
|
|
arrSize = x3a->count;
|
|
array = (struct state **)calloc(arrSize, sizeof(struct state *));
|
|
if( array ){
|
|
for(i=0; i<arrSize; i++) array[i] = x3a->tbl[i].data;
|
|
}
|
|
return array;
|
|
}
|
|
|
|
/* Hash a configuration */
|
|
PRIVATE unsigned confighash(struct config *a)
|
|
{
|
|
unsigned h=0;
|
|
h = h*571 + a->rp->index*37 + a->dot;
|
|
return h;
|
|
}
|
|
|
|
/* There is one instance of the following structure for each
|
|
** associative array of type "x4".
|
|
*/
|
|
struct s_x4 {
|
|
int size; /* The number of available slots. */
|
|
/* Must be a power of 2 greater than or */
|
|
/* equal to 1 */
|
|
int count; /* Number of currently slots filled */
|
|
struct s_x4node *tbl; /* The data stored here */
|
|
struct s_x4node **ht; /* Hash table for lookups */
|
|
};
|
|
|
|
/* There is one instance of this structure for every data element
|
|
** in an associative array of type "x4".
|
|
*/
|
|
typedef struct s_x4node {
|
|
struct config *data; /* The data */
|
|
struct s_x4node *next; /* Next entry with the same hash */
|
|
struct s_x4node **from; /* Previous link */
|
|
} x4node;
|
|
|
|
/* There is only one instance of the array, which is the following */
|
|
static struct s_x4 *x4a;
|
|
|
|
/* Allocate a new associative array */
|
|
void Configtable_init(){
|
|
if( x4a ) return;
|
|
x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
|
|
if( x4a ){
|
|
x4a->size = 64;
|
|
x4a->count = 0;
|
|
x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*));
|
|
if( x4a->tbl==0 ){
|
|
free(x4a);
|
|
x4a = 0;
|
|
}else{
|
|
int i;
|
|
x4a->ht = (x4node**)&(x4a->tbl[64]);
|
|
for(i=0; i<64; i++) x4a->ht[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
/* Insert a new record into the array. Return TRUE if successful.
|
|
** Prior data with the same key is NOT overwritten */
|
|
int Configtable_insert(struct config *data)
|
|
{
|
|
x4node *np;
|
|
unsigned h;
|
|
unsigned ph;
|
|
|
|
if( x4a==0 ) return 0;
|
|
ph = confighash(data);
|
|
h = ph & (x4a->size-1);
|
|
np = x4a->ht[h];
|
|
while( np ){
|
|
if( Configcmp((const char *) np->data,(const char *) data)==0 ){
|
|
/* An existing entry with the same key is found. */
|
|
/* Fail because overwrite is not allows. */
|
|
return 0;
|
|
}
|
|
np = np->next;
|
|
}
|
|
if( x4a->count>=x4a->size ){
|
|
/* Need to make the hash table bigger */
|
|
int i,arrSize;
|
|
struct s_x4 array;
|
|
array.size = arrSize = x4a->size*2;
|
|
array.count = x4a->count;
|
|
array.tbl = (x4node*)calloc(arrSize, sizeof(x4node) + sizeof(x4node*));
|
|
if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
|
|
array.ht = (x4node**)&(array.tbl[arrSize]);
|
|
for(i=0; i<arrSize; i++) array.ht[i] = 0;
|
|
for(i=0; i<x4a->count; i++){
|
|
x4node *oldnp, *newnp;
|
|
oldnp = &(x4a->tbl[i]);
|
|
h = confighash(oldnp->data) & (arrSize-1);
|
|
newnp = &(array.tbl[i]);
|
|
if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
|
|
newnp->next = array.ht[h];
|
|
newnp->data = oldnp->data;
|
|
newnp->from = &(array.ht[h]);
|
|
array.ht[h] = newnp;
|
|
}
|
|
free(x4a->tbl);
|
|
*x4a = array;
|
|
}
|
|
/* Insert the new data */
|
|
h = ph & (x4a->size-1);
|
|
np = &(x4a->tbl[x4a->count++]);
|
|
np->data = data;
|
|
if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
|
|
np->next = x4a->ht[h];
|
|
x4a->ht[h] = np;
|
|
np->from = &(x4a->ht[h]);
|
|
return 1;
|
|
}
|
|
|
|
/* Return a pointer to data assigned to the given key. Return NULL
|
|
** if no such key. */
|
|
struct config *Configtable_find(struct config *key)
|
|
{
|
|
int h;
|
|
x4node *np;
|
|
|
|
if( x4a==0 ) return 0;
|
|
h = confighash(key) & (x4a->size-1);
|
|
np = x4a->ht[h];
|
|
while( np ){
|
|
if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
|
|
np = np->next;
|
|
}
|
|
return np ? np->data : 0;
|
|
}
|
|
|
|
/* Remove all data from the table. Pass each data to the function "f"
|
|
** as it is removed. ("f" may be null to avoid this step.) */
|
|
void Configtable_clear(int(*f)(struct config *))
|
|
{
|
|
int i;
|
|
if( x4a==0 || x4a->count==0 ) return;
|
|
if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
|
|
for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
|
|
x4a->count = 0;
|
|
return;
|
|
}
|