first commit
This commit is contained in:
commit
b21727a3fe
20 changed files with 18126 additions and 0 deletions
987
documentation/lemon.html
Normal file
987
documentation/lemon.html
Normal file
|
@ -0,0 +1,987 @@
|
|||
<html>
|
||||
<head>
|
||||
<title>The Lemon Parser Generator</title>
|
||||
</head>
|
||||
<body bgcolor=white>
|
||||
<h1 align=center>The Lemon Parser Generator</h1>
|
||||
|
||||
<p>Lemon is an LALR(1) parser generator for C.
|
||||
It does the same job as "bison" and "yacc".
|
||||
But lemon is not a bison or yacc clone. Lemon
|
||||
uses a different grammar syntax which is designed to
|
||||
reduce the number of coding errors. Lemon also uses a
|
||||
parsing engine that is faster than yacc and
|
||||
bison and which is both reentrant and threadsafe.
|
||||
(Update: Since the previous sentence was written, bison
|
||||
has also been updated so that it too can generate a
|
||||
reentrant and threadsafe parser.)
|
||||
Lemon also implements features that can be used
|
||||
to eliminate resource leaks, making is suitable for use
|
||||
in long-running programs such as graphical user interfaces
|
||||
or embedded controllers.</p>
|
||||
|
||||
<p>This document is an introduction to the Lemon
|
||||
parser generator.</p>
|
||||
|
||||
<h2>Theory of Operation</h2>
|
||||
|
||||
<p>The main goal of Lemon is to translate a context free grammar (CFG)
|
||||
for a particular language into C code that implements a parser for
|
||||
that language.
|
||||
The program has two inputs:
|
||||
<ul>
|
||||
<li>The grammar specification.
|
||||
<li>A parser template file.
|
||||
</ul>
|
||||
Typically, only the grammar specification is supplied by the programmer.
|
||||
Lemon comes with a default parser template which works fine for most
|
||||
applications. But the user is free to substitute a different parser
|
||||
template if desired.</p>
|
||||
|
||||
<p>Depending on command-line options, Lemon will generate between
|
||||
one and three files of outputs.
|
||||
<ul>
|
||||
<li>C code to implement the parser.
|
||||
<li>A header file defining an integer ID for each terminal symbol.
|
||||
<li>An information file that describes the states of the generated parser
|
||||
automaton.
|
||||
</ul>
|
||||
By default, all three of these output files are generated.
|
||||
The header file is suppressed if the "-m" command-line option is
|
||||
used and the report file is omitted when "-q" is selected.</p>
|
||||
|
||||
<p>The grammar specification file uses a ".y" suffix, by convention.
|
||||
In the examples used in this document, we'll assume the name of the
|
||||
grammar file is "gram.y". A typical use of Lemon would be the
|
||||
following command:
|
||||
<pre>
|
||||
lemon gram.y
|
||||
</pre>
|
||||
This command will generate three output files named "gram.c",
|
||||
"gram.h" and "gram.out".
|
||||
The first is C code to implement the parser. The second
|
||||
is the header file that defines numerical values for all
|
||||
terminal symbols, and the last is the report that explains
|
||||
the states used by the parser automaton.</p>
|
||||
|
||||
<h3>Command Line Options</h3>
|
||||
|
||||
<p>The behavior of Lemon can be modified using command-line options.
|
||||
You can obtain a list of the available command-line options together
|
||||
with a brief explanation of what each does by typing
|
||||
<pre>
|
||||
lemon -?
|
||||
</pre>
|
||||
As of this writing, the following command-line options are supported:
|
||||
<ul>
|
||||
<li><b>-b</b>
|
||||
Show only the basis for each parser state in the report file.
|
||||
<li><b>-c</b>
|
||||
Do not compress the generated action tables.
|
||||
<li><b>-D<i>name</i></b>
|
||||
Define C preprocessor macro <i>name</i>. This macro is useable by
|
||||
"%ifdef" lines in the grammar file.
|
||||
<li><b>-g</b>
|
||||
Do not generate a parser. Instead write the input grammar to standard
|
||||
output with all comments, actions, and other extraneous text removed.
|
||||
<li><b>-l</b>
|
||||
Omit "#line" directives in the generated parser C code.
|
||||
<li><b>-m</b>
|
||||
Cause the output C source code to be compatible with the "makeheaders"
|
||||
program.
|
||||
<li><b>-p</b>
|
||||
Display all conflicts that are resolved by
|
||||
<a href='#precrules'>precedence rules</a>.
|
||||
<li><b>-q</b>
|
||||
Suppress generation of the report file.
|
||||
<li><b>-r</b>
|
||||
Do not sort or renumber the parser states as part of optimization.
|
||||
<li><b>-s</b>
|
||||
Show parser statistics before existing.
|
||||
<li><b>-T<i>file</i></b>
|
||||
Use <i>file</i> as the template for the generated C-code parser implementation.
|
||||
<li><b>-x</b>
|
||||
Print the Lemon version number.
|
||||
</ul>
|
||||
|
||||
<h3>The Parser Interface</h3>
|
||||
|
||||
<p>Lemon doesn't generate a complete, working program. It only generates
|
||||
a few subroutines that implement a parser. This section describes
|
||||
the interface to those subroutines. It is up to the programmer to
|
||||
call these subroutines in an appropriate way in order to produce a
|
||||
complete system.</p>
|
||||
|
||||
<p>Before a program begins using a Lemon-generated parser, the program
|
||||
must first create the parser.
|
||||
A new parser is created as follows:
|
||||
<pre>
|
||||
void *pParser = ParseAlloc( malloc );
|
||||
</pre>
|
||||
The ParseAlloc() routine allocates and initializes a new parser and
|
||||
returns a pointer to it.
|
||||
The actual data structure used to represent a parser is opaque —
|
||||
its internal structure is not visible or usable by the calling routine.
|
||||
For this reason, the ParseAlloc() routine returns a pointer to void
|
||||
rather than a pointer to some particular structure.
|
||||
The sole argument to the ParseAlloc() routine is a pointer to the
|
||||
subroutine used to allocate memory. Typically this means malloc().</p>
|
||||
|
||||
<p>After a program is finished using a parser, it can reclaim all
|
||||
memory allocated by that parser by calling
|
||||
<pre>
|
||||
ParseFree(pParser, free);
|
||||
</pre>
|
||||
The first argument is the same pointer returned by ParseAlloc(). The
|
||||
second argument is a pointer to the function used to release bulk
|
||||
memory back to the system.</p>
|
||||
|
||||
<p>After a parser has been allocated using ParseAlloc(), the programmer
|
||||
must supply the parser with a sequence of tokens (terminal symbols) to
|
||||
be parsed. This is accomplished by calling the following function
|
||||
once for each token:
|
||||
<pre>
|
||||
Parse(pParser, hTokenID, sTokenData, pArg);
|
||||
</pre>
|
||||
The first argument to the Parse() routine is the pointer returned by
|
||||
ParseAlloc().
|
||||
The second argument is a small positive integer that tells the parse the
|
||||
type of the next token in the data stream.
|
||||
There is one token type for each terminal symbol in the grammar.
|
||||
The gram.h file generated by Lemon contains #define statements that
|
||||
map symbolic terminal symbol names into appropriate integer values.
|
||||
A value of 0 for the second argument is a special flag to the
|
||||
parser to indicate that the end of input has been reached.
|
||||
The third argument is the value of the given token. By default,
|
||||
the type of the third argument is integer, but the grammar will
|
||||
usually redefine this type to be some kind of structure.
|
||||
Typically the second argument will be a broad category of tokens
|
||||
such as "identifier" or "number" and the third argument will
|
||||
be the name of the identifier or the value of the number.</p>
|
||||
|
||||
<p>The Parse() function may have either three or four arguments,
|
||||
depending on the grammar. If the grammar specification file requests
|
||||
it (via the <a href='#extraarg'><tt>extra_argument</tt> directive</a>),
|
||||
the Parse() function will have a fourth parameter that can be
|
||||
of any type chosen by the programmer. The parser doesn't do anything
|
||||
with this argument except to pass it through to action routines.
|
||||
This is a convenient mechanism for passing state information down
|
||||
to the action routines without having to use global variables.</p>
|
||||
|
||||
<p>A typical use of a Lemon parser might look something like the
|
||||
following:
|
||||
<pre>
|
||||
01 ParseTree *ParseFile(const char *zFilename){
|
||||
02 Tokenizer *pTokenizer;
|
||||
03 void *pParser;
|
||||
04 Token sToken;
|
||||
05 int hTokenId;
|
||||
06 ParserState sState;
|
||||
07
|
||||
08 pTokenizer = TokenizerCreate(zFilename);
|
||||
09 pParser = ParseAlloc( malloc );
|
||||
10 InitParserState(&sState);
|
||||
11 while( GetNextToken(pTokenizer, &hTokenId, &sToken) ){
|
||||
12 Parse(pParser, hTokenId, sToken, &sState);
|
||||
13 }
|
||||
14 Parse(pParser, 0, sToken, &sState);
|
||||
15 ParseFree(pParser, free );
|
||||
16 TokenizerFree(pTokenizer);
|
||||
17 return sState.treeRoot;
|
||||
18 }
|
||||
</pre>
|
||||
This example shows a user-written routine that parses a file of
|
||||
text and returns a pointer to the parse tree.
|
||||
(All error-handling code is omitted from this example to keep it
|
||||
simple.)
|
||||
We assume the existence of some kind of tokenizer which is created
|
||||
using TokenizerCreate() on line 8 and deleted by TokenizerFree()
|
||||
on line 16. The GetNextToken() function on line 11 retrieves the
|
||||
next token from the input file and puts its type in the
|
||||
integer variable hTokenId. The sToken variable is assumed to be
|
||||
some kind of structure that contains details about each token,
|
||||
such as its complete text, what line it occurs on, etc. </p>
|
||||
|
||||
<p>This example also assumes the existence of structure of type
|
||||
ParserState that holds state information about a particular parse.
|
||||
An instance of such a structure is created on line 6 and initialized
|
||||
on line 10. A pointer to this structure is passed into the Parse()
|
||||
routine as the optional 4th argument.
|
||||
The action routine specified by the grammar for the parser can use
|
||||
the ParserState structure to hold whatever information is useful and
|
||||
appropriate. In the example, we note that the treeRoot field of
|
||||
the ParserState structure is left pointing to the root of the parse
|
||||
tree.</p>
|
||||
|
||||
<p>The core of this example as it relates to Lemon is as follows:
|
||||
<pre>
|
||||
ParseFile(){
|
||||
pParser = ParseAlloc( malloc );
|
||||
while( GetNextToken(pTokenizer,&hTokenId, &sToken) ){
|
||||
Parse(pParser, hTokenId, sToken);
|
||||
}
|
||||
Parse(pParser, 0, sToken);
|
||||
ParseFree(pParser, free );
|
||||
}
|
||||
</pre>
|
||||
Basically, what a program has to do to use a Lemon-generated parser
|
||||
is first create the parser, then send it lots of tokens obtained by
|
||||
tokenizing an input source. When the end of input is reached, the
|
||||
Parse() routine should be called one last time with a token type
|
||||
of 0. This step is necessary to inform the parser that the end of
|
||||
input has been reached. Finally, we reclaim memory used by the
|
||||
parser by calling ParseFree().</p>
|
||||
|
||||
<p>There is one other interface routine that should be mentioned
|
||||
before we move on.
|
||||
The ParseTrace() function can be used to generate debugging output
|
||||
from the parser. A prototype for this routine is as follows:
|
||||
<pre>
|
||||
ParseTrace(FILE *stream, char *zPrefix);
|
||||
</pre>
|
||||
After this routine is called, a short (one-line) message is written
|
||||
to the designated output stream every time the parser changes states
|
||||
or calls an action routine. Each such message is prefaced using
|
||||
the text given by zPrefix. This debugging output can be turned off
|
||||
by calling ParseTrace() again with a first argument of NULL (0).</p>
|
||||
|
||||
<h3>Differences With YACC and BISON</h3>
|
||||
|
||||
<p>Programmers who have previously used the yacc or bison parser
|
||||
generator will notice several important differences between yacc and/or
|
||||
bison and Lemon.
|
||||
<ul>
|
||||
<li>In yacc and bison, the parser calls the tokenizer. In Lemon,
|
||||
the tokenizer calls the parser.
|
||||
<li>Lemon uses no global variables. Yacc and bison use global variables
|
||||
to pass information between the tokenizer and parser.
|
||||
<li>Lemon allows multiple parsers to be running simultaneously. Yacc
|
||||
and bison do not.
|
||||
</ul>
|
||||
These differences may cause some initial confusion for programmers
|
||||
with prior yacc and bison experience.
|
||||
But after years of experience using Lemon, I firmly
|
||||
believe that the Lemon way of doing things is better.</p>
|
||||
|
||||
<p><i>Updated as of 2016-02-16:</i>
|
||||
The text above was written in the 1990s.
|
||||
We are told that Bison has lately been enhanced to support the
|
||||
tokenizer-calls-parser paradigm used by Lemon, and to obviate the
|
||||
need for global variables.</p>
|
||||
|
||||
<h2>Input File Syntax</h2>
|
||||
|
||||
<p>The main purpose of the grammar specification file for Lemon is
|
||||
to define the grammar for the parser. But the input file also
|
||||
specifies additional information Lemon requires to do its job.
|
||||
Most of the work in using Lemon is in writing an appropriate
|
||||
grammar file.</p>
|
||||
|
||||
<p>The grammar file for lemon is, for the most part, free format.
|
||||
It does not have sections or divisions like yacc or bison. Any
|
||||
declaration can occur at any point in the file.
|
||||
Lemon ignores whitespace (except where it is needed to separate
|
||||
tokens) and it honors the same commenting conventions as C and C++.</p>
|
||||
|
||||
<h3>Terminals and Nonterminals</h3>
|
||||
|
||||
<p>A terminal symbol (token) is any string of alphanumeric
|
||||
and/or underscore characters
|
||||
that begins with an upper case letter.
|
||||
A terminal can contain lowercase letters after the first character,
|
||||
but the usual convention is to make terminals all upper case.
|
||||
A nonterminal, on the other hand, is any string of alphanumeric
|
||||
and underscore characters than begins with a lower case letter.
|
||||
Again, the usual convention is to make nonterminals use all lower
|
||||
case letters.</p>
|
||||
|
||||
<p>In Lemon, terminal and nonterminal symbols do not need to
|
||||
be declared or identified in a separate section of the grammar file.
|
||||
Lemon is able to generate a list of all terminals and nonterminals
|
||||
by examining the grammar rules, and it can always distinguish a
|
||||
terminal from a nonterminal by checking the case of the first
|
||||
character of the name.</p>
|
||||
|
||||
<p>Yacc and bison allow terminal symbols to have either alphanumeric
|
||||
names or to be individual characters included in single quotes, like
|
||||
this: ')' or '$'. Lemon does not allow this alternative form for
|
||||
terminal symbols. With Lemon, all symbols, terminals and nonterminals,
|
||||
must have alphanumeric names.</p>
|
||||
|
||||
<h3>Grammar Rules</h3>
|
||||
|
||||
<p>The main component of a Lemon grammar file is a sequence of grammar
|
||||
rules.
|
||||
Each grammar rule consists of a nonterminal symbol followed by
|
||||
the special symbol "::=" and then a list of terminals and/or nonterminals.
|
||||
The rule is terminated by a period.
|
||||
The list of terminals and nonterminals on the right-hand side of the
|
||||
rule can be empty.
|
||||
Rules can occur in any order, except that the left-hand side of the
|
||||
first rule is assumed to be the start symbol for the grammar (unless
|
||||
specified otherwise using the <tt>%start</tt> directive described below.)
|
||||
A typical sequence of grammar rules might look something like this:
|
||||
<pre>
|
||||
expr ::= expr PLUS expr.
|
||||
expr ::= expr TIMES expr.
|
||||
expr ::= LPAREN expr RPAREN.
|
||||
expr ::= VALUE.
|
||||
</pre>
|
||||
</p>
|
||||
|
||||
<p>There is one non-terminal in this example, "expr", and five
|
||||
terminal symbols or tokens: "PLUS", "TIMES", "LPAREN",
|
||||
"RPAREN" and "VALUE".</p>
|
||||
|
||||
<p>Like yacc and bison, Lemon allows the grammar to specify a block
|
||||
of C code that will be executed whenever a grammar rule is reduced
|
||||
by the parser.
|
||||
In Lemon, this action is specified by putting the C code (contained
|
||||
within curly braces <tt>{...}</tt>) immediately after the
|
||||
period that closes the rule.
|
||||
For example:
|
||||
<pre>
|
||||
expr ::= expr PLUS expr. { printf("Doing an addition...\n"); }
|
||||
</pre>
|
||||
</p>
|
||||
|
||||
<p>In order to be useful, grammar actions must normally be linked to
|
||||
their associated grammar rules.
|
||||
In yacc and bison, this is accomplished by embedding a "$$" in the
|
||||
action to stand for the value of the left-hand side of the rule and
|
||||
symbols "$1", "$2", and so forth to stand for the value of
|
||||
the terminal or nonterminal at position 1, 2 and so forth on the
|
||||
right-hand side of the rule.
|
||||
This idea is very powerful, but it is also very error-prone. The
|
||||
single most common source of errors in a yacc or bison grammar is
|
||||
to miscount the number of symbols on the right-hand side of a grammar
|
||||
rule and say "$7" when you really mean "$8".</p>
|
||||
|
||||
<p>Lemon avoids the need to count grammar symbols by assigning symbolic
|
||||
names to each symbol in a grammar rule and then using those symbolic
|
||||
names in the action.
|
||||
In yacc or bison, one would write this:
|
||||
<pre>
|
||||
expr -> expr PLUS expr { $$ = $1 + $3; };
|
||||
</pre>
|
||||
But in Lemon, the same rule becomes the following:
|
||||
<pre>
|
||||
expr(A) ::= expr(B) PLUS expr(C). { A = B+C; }
|
||||
</pre>
|
||||
In the Lemon rule, any symbol in parentheses after a grammar rule
|
||||
symbol becomes a place holder for that symbol in the grammar rule.
|
||||
This place holder can then be used in the associated C action to
|
||||
stand for the value of that symbol.<p>
|
||||
|
||||
<p>The Lemon notation for linking a grammar rule with its reduce
|
||||
action is superior to yacc/bison on several counts.
|
||||
First, as mentioned above, the Lemon method avoids the need to
|
||||
count grammar symbols.
|
||||
Secondly, if a terminal or nonterminal in a Lemon grammar rule
|
||||
includes a linking symbol in parentheses but that linking symbol
|
||||
is not actually used in the reduce action, then an error message
|
||||
is generated.
|
||||
For example, the rule
|
||||
<pre>
|
||||
expr(A) ::= expr(B) PLUS expr(C). { A = B; }
|
||||
</pre>
|
||||
will generate an error because the linking symbol "C" is used
|
||||
in the grammar rule but not in the reduce action.</p>
|
||||
|
||||
<p>The Lemon notation for linking grammar rules to reduce actions
|
||||
also facilitates the use of destructors for reclaiming memory
|
||||
allocated by the values of terminals and nonterminals on the
|
||||
right-hand side of a rule.</p>
|
||||
|
||||
<a name='precrules'></a>
|
||||
<h3>Precedence Rules</h3>
|
||||
|
||||
<p>Lemon resolves parsing ambiguities in exactly the same way as
|
||||
yacc and bison. A shift-reduce conflict is resolved in favor
|
||||
of the shift, and a reduce-reduce conflict is resolved by reducing
|
||||
whichever rule comes first in the grammar file.</p>
|
||||
|
||||
<p>Just like in
|
||||
yacc and bison, Lemon allows a measure of control
|
||||
over the resolution of paring conflicts using precedence rules.
|
||||
A precedence value can be assigned to any terminal symbol
|
||||
using the
|
||||
<a href='#pleft'>%left</a>,
|
||||
<a href='#pright'>%right</a> or
|
||||
<a href='#pnonassoc'>%nonassoc</a> directives. Terminal symbols
|
||||
mentioned in earlier directives have a lower precedence that
|
||||
terminal symbols mentioned in later directives. For example:</p>
|
||||
|
||||
<p><pre>
|
||||
%left AND.
|
||||
%left OR.
|
||||
%nonassoc EQ NE GT GE LT LE.
|
||||
%left PLUS MINUS.
|
||||
%left TIMES DIVIDE MOD.
|
||||
%right EXP NOT.
|
||||
</pre></p>
|
||||
|
||||
<p>In the preceding sequence of directives, the AND operator is
|
||||
defined to have the lowest precedence. The OR operator is one
|
||||
precedence level higher. And so forth. Hence, the grammar would
|
||||
attempt to group the ambiguous expression
|
||||
<pre>
|
||||
a AND b OR c
|
||||
</pre>
|
||||
like this
|
||||
<pre>
|
||||
a AND (b OR c).
|
||||
</pre>
|
||||
The associativity (left, right or nonassoc) is used to determine
|
||||
the grouping when the precedence is the same. AND is left-associative
|
||||
in our example, so
|
||||
<pre>
|
||||
a AND b AND c
|
||||
</pre>
|
||||
is parsed like this
|
||||
<pre>
|
||||
(a AND b) AND c.
|
||||
</pre>
|
||||
The EXP operator is right-associative, though, so
|
||||
<pre>
|
||||
a EXP b EXP c
|
||||
</pre>
|
||||
is parsed like this
|
||||
<pre>
|
||||
a EXP (b EXP c).
|
||||
</pre>
|
||||
The nonassoc precedence is used for non-associative operators.
|
||||
So
|
||||
<pre>
|
||||
a EQ b EQ c
|
||||
</pre>
|
||||
is an error.</p>
|
||||
|
||||
<p>The precedence of non-terminals is transferred to rules as follows:
|
||||
The precedence of a grammar rule is equal to the precedence of the
|
||||
left-most terminal symbol in the rule for which a precedence is
|
||||
defined. This is normally what you want, but in those cases where
|
||||
you want to precedence of a grammar rule to be something different,
|
||||
you can specify an alternative precedence symbol by putting the
|
||||
symbol in square braces after the period at the end of the rule and
|
||||
before any C-code. For example:</p>
|
||||
|
||||
<p><pre>
|
||||
expr = MINUS expr. [NOT]
|
||||
</pre></p>
|
||||
|
||||
<p>This rule has a precedence equal to that of the NOT symbol, not the
|
||||
MINUS symbol as would have been the case by default.</p>
|
||||
|
||||
<p>With the knowledge of how precedence is assigned to terminal
|
||||
symbols and individual
|
||||
grammar rules, we can now explain precisely how parsing conflicts
|
||||
are resolved in Lemon. Shift-reduce conflicts are resolved
|
||||
as follows:
|
||||
<ul>
|
||||
<li> If either the token to be shifted or the rule to be reduced
|
||||
lacks precedence information, then resolve in favor of the
|
||||
shift, but report a parsing conflict.
|
||||
<li> If the precedence of the token to be shifted is greater than
|
||||
the precedence of the rule to reduce, then resolve in favor
|
||||
of the shift. No parsing conflict is reported.
|
||||
<li> If the precedence of the token it be shifted is less than the
|
||||
precedence of the rule to reduce, then resolve in favor of the
|
||||
reduce action. No parsing conflict is reported.
|
||||
<li> If the precedences are the same and the shift token is
|
||||
right-associative, then resolve in favor of the shift.
|
||||
No parsing conflict is reported.
|
||||
<li> If the precedences are the same the shift token is
|
||||
left-associative, then resolve in favor of the reduce.
|
||||
No parsing conflict is reported.
|
||||
<li> Otherwise, resolve the conflict by doing the shift and
|
||||
report the parsing conflict.
|
||||
</ul>
|
||||
Reduce-reduce conflicts are resolved this way:
|
||||
<ul>
|
||||
<li> If either reduce rule
|
||||
lacks precedence information, then resolve in favor of the
|
||||
rule that appears first in the grammar and report a parsing
|
||||
conflict.
|
||||
<li> If both rules have precedence and the precedence is different
|
||||
then resolve the dispute in favor of the rule with the highest
|
||||
precedence and do not report a conflict.
|
||||
<li> Otherwise, resolve the conflict by reducing by the rule that
|
||||
appears first in the grammar and report a parsing conflict.
|
||||
</ul>
|
||||
|
||||
<h3>Special Directives</h3>
|
||||
|
||||
<p>The input grammar to Lemon consists of grammar rules and special
|
||||
directives. We've described all the grammar rules, so now we'll
|
||||
talk about the special directives.</p>
|
||||
|
||||
<p>Directives in lemon can occur in any order. You can put them before
|
||||
the grammar rules, or after the grammar rules, or in the mist of the
|
||||
grammar rules. It doesn't matter. The relative order of
|
||||
directives used to assign precedence to terminals is important, but
|
||||
other than that, the order of directives in Lemon is arbitrary.</p>
|
||||
|
||||
<p>Lemon supports the following special directives:
|
||||
<ul>
|
||||
<li><tt>%code</tt>
|
||||
<li><tt>%default_destructor</tt>
|
||||
<li><tt>%default_type</tt>
|
||||
<li><tt>%destructor</tt>
|
||||
<li><tt>%endif</tt>
|
||||
<li><tt>%extra_argument</tt>
|
||||
<li><tt>%fallback</tt>
|
||||
<li><tt>%ifdef</tt>
|
||||
<li><tt>%ifndef</tt>
|
||||
<li><tt>%include</tt>
|
||||
<li><tt>%left</tt>
|
||||
<li><tt>%name</tt>
|
||||
<li><tt>%nonassoc</tt>
|
||||
<li><tt>%parse_accept</tt>
|
||||
<li><tt>%parse_failure </tt>
|
||||
<li><tt>%right</tt>
|
||||
<li><tt>%stack_overflow</tt>
|
||||
<li><tt>%stack_size</tt>
|
||||
<li><tt>%start_symbol</tt>
|
||||
<li><tt>%syntax_error</tt>
|
||||
<li><tt>%token_class</tt>
|
||||
<li><tt>%token_destructor</tt>
|
||||
<li><tt>%token_prefix</tt>
|
||||
<li><tt>%token_type</tt>
|
||||
<li><tt>%type</tt>
|
||||
<li><tt>%wildcard</tt>
|
||||
</ul>
|
||||
Each of these directives will be described separately in the
|
||||
following sections:</p>
|
||||
|
||||
<a name='pcode'></a>
|
||||
<h4>The <tt>%code</tt> directive</h4>
|
||||
|
||||
<p>The %code directive is used to specify addition C code that
|
||||
is added to the end of the main output file. This is similar to
|
||||
the <a href='#pinclude'>%include</a> directive except that %include
|
||||
is inserted at the beginning of the main output file.</p>
|
||||
|
||||
<p>%code is typically used to include some action routines or perhaps
|
||||
a tokenizer or even the "main()" function
|
||||
as part of the output file.</p>
|
||||
|
||||
<a name='default_destructor'></a>
|
||||
<h4>The <tt>%default_destructor</tt> directive</h4>
|
||||
|
||||
<p>The %default_destructor directive specifies a destructor to
|
||||
use for non-terminals that do not have their own destructor
|
||||
specified by a separate %destructor directive. See the documentation
|
||||
on the <a name='#destructor'>%destructor</a> directive below for
|
||||
additional information.</p>
|
||||
|
||||
<p>In some grammers, many different non-terminal symbols have the
|
||||
same datatype and hence the same destructor. This directive is
|
||||
a convenience way to specify the same destructor for all those
|
||||
non-terminals using a single statement.</p>
|
||||
|
||||
<a name='default_type'></a>
|
||||
<h4>The <tt>%default_type</tt> directive</h4>
|
||||
|
||||
<p>The %default_type directive specifies the datatype of non-terminal
|
||||
symbols that do no have their own datatype defined using a separate
|
||||
<a href='#ptype'>%type</a> directive.
|
||||
</p>
|
||||
|
||||
<a name='destructor'></a>
|
||||
<h4>The <tt>%destructor</tt> directive</h4>
|
||||
|
||||
<p>The %destructor directive is used to specify a destructor for
|
||||
a non-terminal symbol.
|
||||
(See also the <a href='#token_destructor'>%token_destructor</a>
|
||||
directive which is used to specify a destructor for terminal symbols.)</p>
|
||||
|
||||
<p>A non-terminal's destructor is called to dispose of the
|
||||
non-terminal's value whenever the non-terminal is popped from
|
||||
the stack. This includes all of the following circumstances:
|
||||
<ul>
|
||||
<li> When a rule reduces and the value of a non-terminal on
|
||||
the right-hand side is not linked to C code.
|
||||
<li> When the stack is popped during error processing.
|
||||
<li> When the ParseFree() function runs.
|
||||
</ul>
|
||||
The destructor can do whatever it wants with the value of
|
||||
the non-terminal, but its design is to deallocate memory
|
||||
or other resources held by that non-terminal.</p>
|
||||
|
||||
<p>Consider an example:
|
||||
<pre>
|
||||
%type nt {void*}
|
||||
%destructor nt { free($$); }
|
||||
nt(A) ::= ID NUM. { A = malloc( 100 ); }
|
||||
</pre>
|
||||
This example is a bit contrived but it serves to illustrate how
|
||||
destructors work. The example shows a non-terminal named
|
||||
"nt" that holds values of type "void*". When the rule for
|
||||
an "nt" reduces, it sets the value of the non-terminal to
|
||||
space obtained from malloc(). Later, when the nt non-terminal
|
||||
is popped from the stack, the destructor will fire and call
|
||||
free() on this malloced space, thus avoiding a memory leak.
|
||||
(Note that the symbol "$$" in the destructor code is replaced
|
||||
by the value of the non-terminal.)</p>
|
||||
|
||||
<p>It is important to note that the value of a non-terminal is passed
|
||||
to the destructor whenever the non-terminal is removed from the
|
||||
stack, unless the non-terminal is used in a C-code action. If
|
||||
the non-terminal is used by C-code, then it is assumed that the
|
||||
C-code will take care of destroying it.
|
||||
More commonly, the value is used to build some
|
||||
larger structure and we don't want to destroy it, which is why
|
||||
the destructor is not called in this circumstance.</p>
|
||||
|
||||
<p>Destructors help avoid memory leaks by automatically freeing
|
||||
allocated objects when they go out of scope.
|
||||
To do the same using yacc or bison is much more difficult.</p>
|
||||
|
||||
<a name="extraarg"></a>
|
||||
<h4>The <tt>%extra_argument</tt> directive</h4>
|
||||
|
||||
The %extra_argument directive instructs Lemon to add a 4th parameter
|
||||
to the parameter list of the Parse() function it generates. Lemon
|
||||
doesn't do anything itself with this extra argument, but it does
|
||||
make the argument available to C-code action routines, destructors,
|
||||
and so forth. For example, if the grammar file contains:</p>
|
||||
|
||||
<p><pre>
|
||||
%extra_argument { MyStruct *pAbc }
|
||||
</pre></p>
|
||||
|
||||
<p>Then the Parse() function generated will have an 4th parameter
|
||||
of type "MyStruct*" and all action routines will have access to
|
||||
a variable named "pAbc" that is the value of the 4th parameter
|
||||
in the most recent call to Parse().</p>
|
||||
|
||||
<a name='pfallback'></a>
|
||||
<h4>The <tt>%fallback</tt> directive</h4>
|
||||
|
||||
<p>The %fallback directive specifies an alternative meaning for one
|
||||
or more tokens. The alternative meaning is tried if the original token
|
||||
would have generated a syntax error.
|
||||
|
||||
<p>The %fallback directive was added to support robust parsing of SQL
|
||||
syntax in <a href="https://www.sqlite.org/">SQLite</a>.
|
||||
The SQL language contains a large assortment of keywords, each of which
|
||||
appears as a different token to the language parser. SQL contains so
|
||||
many keywords, that it can be difficult for programmers to keep up with
|
||||
them all. Programmers will, therefore, sometimes mistakenly use an
|
||||
obscure language keyword for an identifier. The %fallback directive
|
||||
provides a mechanism to tell the parser: "If you are unable to parse
|
||||
this keyword, try treating it as an identifier instead."
|
||||
|
||||
<p>The syntax of %fallback is as follows:
|
||||
|
||||
<blockquote>
|
||||
<tt>%fallback</tt> <i>ID</i> <i>TOKEN...</i> <b>.</b>
|
||||
</blockquote>
|
||||
|
||||
<p>In words, the %fallback directive is followed by a list of token names
|
||||
terminated by a period. The first token name is the fallback token - the
|
||||
token to which all the other tokens fall back to. The second and subsequent
|
||||
arguments are tokens which fall back to the token identified by the first
|
||||
argument.
|
||||
|
||||
<a name='pifdef'></a>
|
||||
<h4>The <tt>%ifdef</tt>, <tt>%ifndef</tt>, and <tt>%endif</tt> directives.</h4>
|
||||
|
||||
<p>The %ifdef, %ifndef, and %endif directives are similar to
|
||||
#ifdef, #ifndef, and #endif in the C-preprocessor, just not as general.
|
||||
Each of these directives must begin at the left margin. No whitespace
|
||||
is allowed between the "%" and the directive name.
|
||||
|
||||
<p>Grammar text in between "%ifdef MACRO" and the next nested "%endif" is
|
||||
ignored unless the "-DMACRO" command-line option is used. Grammar text
|
||||
betwen "%ifndef MACRO" and the next nested "%endif" is included except when
|
||||
the "-DMACRO" command-line option is used.
|
||||
|
||||
<p>Note that the argument to %ifdef and %ifndef must be a single
|
||||
preprocessor symbol name, not a general expression. There is no "%else"
|
||||
directive.
|
||||
|
||||
|
||||
<a name='pinclude'></a>
|
||||
<h4>The <tt>%include</tt> directive</h4>
|
||||
|
||||
<p>The %include directive specifies C code that is included at the
|
||||
top of the generated parser. You can include any text you want --
|
||||
the Lemon parser generator copies it blindly. If you have multiple
|
||||
%include directives in your grammar file, their values are concatenated
|
||||
so that all %include code ultimately appears near the top of the
|
||||
generated parser, in the same order as it appeared in the grammer.</p>
|
||||
|
||||
<p>The %include directive is very handy for getting some extra #include
|
||||
preprocessor statements at the beginning of the generated parser.
|
||||
For example:</p>
|
||||
|
||||
<p><pre>
|
||||
%include {#include <unistd.h>}
|
||||
</pre></p>
|
||||
|
||||
<p>This might be needed, for example, if some of the C actions in the
|
||||
grammar call functions that are prototyed in unistd.h.</p>
|
||||
|
||||
<a name='pleft'></a>
|
||||
<h4>The <tt>%left</tt> directive</h4>
|
||||
|
||||
The %left directive is used (along with the <a href='#pright'>%right</a> and
|
||||
<a href='#pnonassoc'>%nonassoc</a> directives) to declare precedences of
|
||||
terminal symbols. Every terminal symbol whose name appears after
|
||||
a %left directive but before the next period (".") is
|
||||
given the same left-associative precedence value. Subsequent
|
||||
%left directives have higher precedence. For example:</p>
|
||||
|
||||
<p><pre>
|
||||
%left AND.
|
||||
%left OR.
|
||||
%nonassoc EQ NE GT GE LT LE.
|
||||
%left PLUS MINUS.
|
||||
%left TIMES DIVIDE MOD.
|
||||
%right EXP NOT.
|
||||
</pre></p>
|
||||
|
||||
<p>Note the period that terminates each %left, %right or %nonassoc
|
||||
directive.</p>
|
||||
|
||||
<p>LALR(1) grammars can get into a situation where they require
|
||||
a large amount of stack space if you make heavy use or right-associative
|
||||
operators. For this reason, it is recommended that you use %left
|
||||
rather than %right whenever possible.</p>
|
||||
|
||||
<a name='pname'></a>
|
||||
<h4>The <tt>%name</tt> directive</h4>
|
||||
|
||||
<p>By default, the functions generated by Lemon all begin with the
|
||||
five-character string "Parse". You can change this string to something
|
||||
different using the %name directive. For instance:</p>
|
||||
|
||||
<p><pre>
|
||||
%name Abcde
|
||||
</pre></p>
|
||||
|
||||
<p>Putting this directive in the grammar file will cause Lemon to generate
|
||||
functions named
|
||||
<ul>
|
||||
<li> AbcdeAlloc(),
|
||||
<li> AbcdeFree(),
|
||||
<li> AbcdeTrace(), and
|
||||
<li> Abcde().
|
||||
</ul>
|
||||
The %name directive allows you to generator two or more different
|
||||
parsers and link them all into the same executable.
|
||||
</p>
|
||||
|
||||
<a name='pnonassoc'></a>
|
||||
<h4>The <tt>%nonassoc</tt> directive</h4>
|
||||
|
||||
<p>This directive is used to assign non-associative precedence to
|
||||
one or more terminal symbols. See the section on
|
||||
<a href='#precrules'>precedence rules</a>
|
||||
or on the <a href='#pleft'>%left</a> directive for additional information.</p>
|
||||
|
||||
<a name='parse_accept'></a>
|
||||
<h4>The <tt>%parse_accept</tt> directive</h4>
|
||||
|
||||
<p>The %parse_accept directive specifies a block of C code that is
|
||||
executed whenever the parser accepts its input string. To "accept"
|
||||
an input string means that the parser was able to process all tokens
|
||||
without error.</p>
|
||||
|
||||
<p>For example:</p>
|
||||
|
||||
<p><pre>
|
||||
%parse_accept {
|
||||
printf("parsing complete!\n");
|
||||
}
|
||||
</pre></p>
|
||||
|
||||
<a name='parse_failure'></a>
|
||||
<h4>The <tt>%parse_failure</tt> directive</h4>
|
||||
|
||||
<p>The %parse_failure directive specifies a block of C code that
|
||||
is executed whenever the parser fails complete. This code is not
|
||||
executed until the parser has tried and failed to resolve an input
|
||||
error using is usual error recovery strategy. The routine is
|
||||
only invoked when parsing is unable to continue.</p>
|
||||
|
||||
<p><pre>
|
||||
%parse_failure {
|
||||
fprintf(stderr,"Giving up. Parser is hopelessly lost...\n");
|
||||
}
|
||||
</pre></p>
|
||||
|
||||
<a name='pright'></a>
|
||||
<h4>The <tt>%right</tt> directive</h4>
|
||||
|
||||
<p>This directive is used to assign right-associative precedence to
|
||||
one or more terminal symbols. See the section on
|
||||
<a href='#precrules'>precedence rules</a>
|
||||
or on the <a href='#pleft'>%left</a> directive for additional information.</p>
|
||||
|
||||
<a name='stack_overflow'></a>
|
||||
<h4>The <tt>%stack_overflow</tt> directive</h4>
|
||||
|
||||
<p>The %stack_overflow directive specifies a block of C code that
|
||||
is executed if the parser's internal stack ever overflows. Typically
|
||||
this just prints an error message. After a stack overflow, the parser
|
||||
will be unable to continue and must be reset.</p>
|
||||
|
||||
<p><pre>
|
||||
%stack_overflow {
|
||||
fprintf(stderr,"Giving up. Parser stack overflow\n");
|
||||
}
|
||||
</pre></p>
|
||||
|
||||
<p>You can help prevent parser stack overflows by avoiding the use
|
||||
of right recursion and right-precedence operators in your grammar.
|
||||
Use left recursion and and left-precedence operators instead, to
|
||||
encourage rules to reduce sooner and keep the stack size down.
|
||||
For example, do rules like this:
|
||||
<pre>
|
||||
list ::= list element. // left-recursion. Good!
|
||||
list ::= .
|
||||
</pre>
|
||||
Not like this:
|
||||
<pre>
|
||||
list ::= element list. // right-recursion. Bad!
|
||||
list ::= .
|
||||
</pre>
|
||||
|
||||
<a name='stack_size'></a>
|
||||
<h4>The <tt>%stack_size</tt> directive</h4>
|
||||
|
||||
<p>If stack overflow is a problem and you can't resolve the trouble
|
||||
by using left-recursion, then you might want to increase the size
|
||||
of the parser's stack using this directive. Put an positive integer
|
||||
after the %stack_size directive and Lemon will generate a parse
|
||||
with a stack of the requested size. The default value is 100.</p>
|
||||
|
||||
<p><pre>
|
||||
%stack_size 2000
|
||||
</pre></p>
|
||||
|
||||
<a name='start_symbol'></a>
|
||||
<h4>The <tt>%start_symbol</tt> directive</h4>
|
||||
|
||||
<p>By default, the start-symbol for the grammar that Lemon generates
|
||||
is the first non-terminal that appears in the grammar file. But you
|
||||
can choose a different start-symbol using the %start_symbol directive.</p>
|
||||
|
||||
<p><pre>
|
||||
%start_symbol prog
|
||||
</pre></p>
|
||||
|
||||
<a name='token_destructor'></a>
|
||||
<h4>The <tt>%token_destructor</tt> directive</h4>
|
||||
|
||||
<p>The %destructor directive assigns a destructor to a non-terminal
|
||||
symbol. (See the description of the %destructor directive above.)
|
||||
This directive does the same thing for all terminal symbols.</p>
|
||||
|
||||
<p>Unlike non-terminal symbols which may each have a different data type
|
||||
for their values, terminals all use the same data type (defined by
|
||||
the %token_type directive) and so they use a common destructor. Other
|
||||
than that, the token destructor works just like the non-terminal
|
||||
destructors.</p>
|
||||
|
||||
<a name='token_prefix'></a>
|
||||
<h4>The <tt>%token_prefix</tt> directive</h4>
|
||||
|
||||
<p>Lemon generates #defines that assign small integer constants
|
||||
to each terminal symbol in the grammar. If desired, Lemon will
|
||||
add a prefix specified by this directive
|
||||
to each of the #defines it generates.
|
||||
So if the default output of Lemon looked like this:
|
||||
<pre>
|
||||
#define AND 1
|
||||
#define MINUS 2
|
||||
#define OR 3
|
||||
#define PLUS 4
|
||||
</pre>
|
||||
You can insert a statement into the grammar like this:
|
||||
<pre>
|
||||
%token_prefix TOKEN_
|
||||
</pre>
|
||||
to cause Lemon to produce these symbols instead:
|
||||
<pre>
|
||||
#define TOKEN_AND 1
|
||||
#define TOKEN_MINUS 2
|
||||
#define TOKEN_OR 3
|
||||
#define TOKEN_PLUS 4
|
||||
</pre>
|
||||
|
||||
<a name='token_type'></a><a name='ptype'></a>
|
||||
<h4>The <tt>%token_type</tt> and <tt>%type</tt> directives</h4>
|
||||
|
||||
<p>These directives are used to specify the data types for values
|
||||
on the parser's stack associated with terminal and non-terminal
|
||||
symbols. The values of all terminal symbols must be of the same
|
||||
type. This turns out to be the same data type as the 3rd parameter
|
||||
to the Parse() function generated by Lemon. Typically, you will
|
||||
make the value of a terminal symbol by a pointer to some kind of
|
||||
token structure. Like this:</p>
|
||||
|
||||
<p><pre>
|
||||
%token_type {Token*}
|
||||
</pre></p>
|
||||
|
||||
<p>If the data type of terminals is not specified, the default value
|
||||
is "void*".</p>
|
||||
|
||||
<p>Non-terminal symbols can each have their own data types. Typically
|
||||
the data type of a non-terminal is a pointer to the root of a parse-tree
|
||||
structure that contains all information about that non-terminal.
|
||||
For example:</p>
|
||||
|
||||
<p><pre>
|
||||
%type expr {Expr*}
|
||||
</pre></p>
|
||||
|
||||
<p>Each entry on the parser's stack is actually a union containing
|
||||
instances of all data types for every non-terminal and terminal symbol.
|
||||
Lemon will automatically use the correct element of this union depending
|
||||
on what the corresponding non-terminal or terminal symbol is. But
|
||||
the grammar designer should keep in mind that the size of the union
|
||||
will be the size of its largest element. So if you have a single
|
||||
non-terminal whose data type requires 1K of storage, then your 100
|
||||
entry parser stack will require 100K of heap space. If you are willing
|
||||
and able to pay that price, fine. You just need to know.</p>
|
||||
|
||||
<a name='pwildcard'></a>
|
||||
<h4>The <tt>%wildcard</tt> directive</h4>
|
||||
|
||||
<p>The %wildcard directive is followed by a single token name and a
|
||||
period. This directive specifies that the identified token should
|
||||
match any input token.
|
||||
|
||||
<p>When the generated parser has the choice of matching an input against
|
||||
the wildcard token and some other token, the other token is always used.
|
||||
The wildcard token is only matched if there are no other alternatives.
|
||||
|
||||
<h3>Error Processing</h3>
|
||||
|
||||
<p>After extensive experimentation over several years, it has been
|
||||
discovered that the error recovery strategy used by yacc is about
|
||||
as good as it gets. And so that is what Lemon uses.</p>
|
||||
|
||||
<p>When a Lemon-generated parser encounters a syntax error, it
|
||||
first invokes the code specified by the %syntax_error directive, if
|
||||
any. It then enters its error recovery strategy. The error recovery
|
||||
strategy is to begin popping the parsers stack until it enters a
|
||||
state where it is permitted to shift a special non-terminal symbol
|
||||
named "error". It then shifts this non-terminal and continues
|
||||
parsing. But the %syntax_error routine will not be called again
|
||||
until at least three new tokens have been successfully shifted.</p>
|
||||
|
||||
<p>If the parser pops its stack until the stack is empty, and it still
|
||||
is unable to shift the error symbol, then the %parse_failed routine
|
||||
is invoked and the parser resets itself to its start state, ready
|
||||
to begin parsing a new file. This is what will happen at the very
|
||||
first syntax error, of course, if there are no instances of the
|
||||
"error" non-terminal in your grammar.</p>
|
||||
|
||||
</body>
|
||||
</html>
|
Loading…
Add table
Add a link
Reference in a new issue