test-kivy-app/kivy_venv/lib/python3.11/site-packages/kivy/tests/test_multistroke.py
2024-09-15 15:12:16 +03:00

390 lines
14 KiB
Python

import pytest
import unittest
import kivy.multistroke
from kivy.multistroke import Recognizer, MultistrokeGesture
from kivy.vector import Vector
best_score = 0.0
counter = 0
def best_score_cb(result):
global best_score
best_score = result.best['score']
def counter_cb(result):
global counter
counter += 1
# These are taken from the examples in JavaScript code (but made unistrokes)
TGesture = [Vector(30, 7), Vector(103, 7), Vector(66, 7), Vector(66, 87)]
NGesture = [Vector(177, 92), Vector(177, 2), Vector(182, 1), Vector(246, 95),
Vector(247, 87), Vector(247, 1)]
# dataset that matches N pretty well
Ncandidate = [
Vector(160, 271), Vector(160, 263), Vector(158, 257), Vector(156, 249),
Vector(146, 187), Vector(144, 181), Vector(144, 175), Vector(142, 167),
Vector(140, 113), Vector(140, 107), Vector(140, 103), Vector(140, 99),
Vector(140, 85), Vector(138, 85), Vector(138, 87), Vector(138, 89),
Vector(166, 151), Vector(176, 171), Vector(188, 189), Vector(200, 205),
Vector(238, 263), Vector(242, 269), Vector(244, 273), Vector(246, 277),
Vector(252, 289), Vector(254, 291), Vector(256, 291), Vector(258, 291),
Vector(260, 281), Vector(260, 275), Vector(260, 267), Vector(260, 255),
Vector(254, 189), Vector(254, 175), Vector(254, 161), Vector(254, 147),
Vector(260, 103), Vector(260, 101), Vector(260, 99), Vector(260, 95),
Vector(260, 93), Vector(260, 91), Vector(260, 89)
]
class MultistrokeTestCase(unittest.TestCase):
def setUp(self):
global best_score
best_score = 0
counter = 0
self.Tinvar = MultistrokeGesture('T', [TGesture],
orientation_sensitive=False)
self.Tbound = MultistrokeGesture('T', [TGesture],
orientation_sensitive=True)
self.Ninvar = MultistrokeGesture('N', [NGesture],
orientation_sensitive=False)
self.Nbound = MultistrokeGesture('N', [NGesture],
orientation_sensitive=True)
@pytest.fixture(autouse=True)
def set_clock(self, kivy_clock):
self.kivy_clock = kivy_clock
# -----------------------------------------------------------------------------
# Recognizer scheduling
# -----------------------------------------------------------------------------
def test_immediate(self):
gdb = Recognizer(db=[self.Tinvar, self.Ninvar])
r = gdb.recognize([Ncandidate], max_gpf=0)
self.assertEqual(r._match_ops, 4)
self.assertEqual(r._completed, 2)
self.assertEqual(r.progress, 1)
self.assertTrue(r.best['score'] > 0.94 and r.best['score'] < 0.95)
def test_scheduling(self):
global best_score
from kivy.clock import Clock
gdb = Recognizer(db=[self.Tinvar, self.Ninvar])
r = gdb.recognize([Ncandidate], max_gpf=1)
r.bind(on_complete=best_score_cb)
# _recognize_tick is scheduled here; compares to Tinvar
Clock.tick()
self.assertEqual(r.progress, .5)
self.assertEqual(best_score, .0)
# Now complete the search operation
Clock.tick()
self.assertEqual(r.progress, 1)
self.assertTrue(best_score > 0.94 and best_score < 0.95)
def test_scheduling_limits(self):
global best_score
from kivy.clock import Clock
gdb = Recognizer(db=[self.Ninvar])
tpls = len(self.Ninvar.templates)
best_score = 0
gdb.db.append(self.Ninvar)
r = gdb.recognize([Ncandidate], max_gpf=1)
r.bind(on_complete=best_score_cb)
self.assertEqual(r.progress, 0)
Clock.tick()
self.assertEqual(r.progress, 0.5)
self.assertEqual(best_score, 0)
Clock.tick()
self.assertEqual(r.progress, 1)
self.assertTrue(best_score > 0.94 and best_score < 0.95)
best_score = 0
gdb.db.append(self.Ninvar)
r = gdb.recognize([Ncandidate], max_gpf=1)
r.bind(on_complete=best_score_cb)
self.assertEqual(r.progress, 0)
Clock.tick()
self.assertEqual(r.progress, 1 / 3.)
Clock.tick()
self.assertEqual(r.progress, 2 / 3.)
self.assertEqual(best_score, 0)
Clock.tick()
self.assertEqual(r.progress, 1)
self.assertTrue(best_score > 0.94 and best_score < 0.95)
def test_parallel_recognize(self):
global counter
from kivy.clock import Clock
counter = 0
gdb = Recognizer()
for i in range(9):
gdb.add_gesture('T', [TGesture], priority=50)
gdb.add_gesture('N', [NGesture])
r1 = gdb.recognize([Ncandidate], max_gpf=1)
r1.bind(on_complete=counter_cb)
Clock.tick() # first run scheduled here; 9 left
r2 = gdb.recognize([Ncandidate], max_gpf=1)
r2.bind(on_complete=counter_cb)
Clock.tick() # 8 left
r3 = gdb.recognize([Ncandidate], max_gpf=1)
r3.bind(on_complete=counter_cb)
Clock.tick() # 7 left
# run some immediate searches, should not interfere.
for i in range(5):
n = gdb.recognize([TGesture], max_gpf=0)
self.assertEqual(n.best['name'], 'T')
self.assertTrue(round(n.best['score'], 1) == 1.0)
for i in range(6):
Clock.tick()
self.assertEqual(counter, 0)
Clock.tick()
self.assertEqual(counter, 1)
Clock.tick()
self.assertEqual(counter, 2)
Clock.tick()
self.assertEqual(counter, 3)
def test_timeout_case_1(self):
global best_score
from kivy.clock import Clock
from time import sleep
best_score = 0
gdb = Recognizer(db=[self.Tbound, self.Ninvar])
r = gdb.recognize([Ncandidate], max_gpf=1, timeout=0.4)
Clock.tick() # matches Tbound in this tick
self.assertEqual(best_score, 0)
sleep(0.4)
Clock.tick() # should match Ninv, but times out (got T)
self.assertEqual(r.status, 'timeout')
self.assertEqual(r.progress, .5)
self.assertTrue(r.best['name'] == 'T')
self.assertTrue(r.best['score'] < 0.5)
def test_timeout_case_2(self):
global best_score
from kivy.clock import Clock
from time import sleep
best_score = 0
gdb = Recognizer(db=[self.Tbound, self.Ninvar, self.Tinvar])
r = gdb.recognize([Ncandidate], max_gpf=1, timeout=0.8)
Clock.tick() # matches Tbound in this tick
self.assertEqual(best_score, 0)
sleep(0.4)
Clock.tick() # matches Ninvar in this tick
sleep(0.4)
Clock.tick() # should match Tinvar, but times out
self.assertEqual(r.status, 'timeout')
self.assertEqual(r.progress, 2 / 3.)
self.assertTrue(r.best['score'] >= .94 and r.best['score'] <= .95)
def test_priority_sorting(self):
gdb = Recognizer()
gdb.add_gesture('N', [NGesture], priority=10)
gdb.add_gesture('T', [TGesture], priority=5)
r = gdb.recognize([Ncandidate], goodscore=0.01, max_gpf=0,
force_priority_sort=True)
self.assertEqual(r.best['name'], 'T')
r = gdb.recognize([Ncandidate], goodscore=0.01,
force_priority_sort=False, max_gpf=0)
self.assertEqual(r.best['name'], 'N')
r = gdb.recognize([Ncandidate], goodscore=0.01, max_gpf=0,
priority=10)
self.assertEqual(r.best['name'], 'T')
r = gdb.recognize([Ncandidate], goodscore=0.01, max_gpf=0,
priority=4)
self.assertEqual(r.best['name'], None)
# -----------------------------------------------------------------------------
# Recognizer - filter tests
# -----------------------------------------------------------------------------
def test_name_filter(self):
gdb = Recognizer(db=[self.Ninvar, self.Nbound])
n = gdb.filter()
self.assertEqual(len(n), 2)
n = gdb.filter(name='X')
self.assertEqual(len(n), 0)
def test_numpoints_filter(self):
gdb = Recognizer(db=[self.Ninvar, self.Nbound])
n = gdb.filter(numpoints=100)
self.assertEqual(len(n), 0)
gdb.add_gesture('T', [TGesture], numpoints=100)
n = gdb.filter(numpoints=100)
self.assertEqual(len(n), 1)
n = gdb.filter(numpoints=[100, 16])
self.assertEqual(len(n), 3)
def test_numstrokes_filter(self):
gdb = Recognizer(db=[self.Ninvar, self.Nbound])
n = gdb.filter(numstrokes=2)
self.assertEqual(len(n), 0)
gdb.add_gesture('T', [TGesture, TGesture])
n = gdb.filter(numstrokes=2)
self.assertEqual(len(n), 1)
n = gdb.filter(numstrokes=[1, 2])
self.assertEqual(len(n), 3)
def test_priority_filter(self):
gdb = Recognizer(db=[self.Ninvar, self.Nbound])
n = gdb.filter(priority=50)
self.assertEqual(len(n), 0)
gdb.add_gesture('T', [TGesture], priority=51)
n = gdb.filter(priority=50)
self.assertEqual(len(n), 0)
n = gdb.filter(priority=51)
self.assertEqual(len(n), 1)
gdb.add_gesture('T', [TGesture], priority=52)
n = gdb.filter(priority=[0, 51])
self.assertEqual(len(n), 1)
n = gdb.filter(priority=[0, 52])
self.assertEqual(len(n), 2)
n = gdb.filter(priority=[51, 52])
self.assertEqual(len(n), 2)
n = gdb.filter(priority=[52, 53])
self.assertEqual(len(n), 1)
n = gdb.filter(priority=[53, 54])
self.assertEqual(len(n), 0)
def test_orientation_filter(self):
gdb = Recognizer(db=[self.Ninvar, self.Nbound])
n = gdb.filter(orientation_sensitive=True)
self.assertEqual(len(n), 1)
n = gdb.filter(orientation_sensitive=False)
self.assertEqual(len(n), 1)
n = gdb.filter(orientation_sensitive=None)
self.assertEqual(len(n), 2)
gdb.db.append(self.Tinvar)
n = gdb.filter(orientation_sensitive=True)
self.assertEqual(len(n), 1)
n = gdb.filter(orientation_sensitive=False)
self.assertEqual(len(n), 2)
n = gdb.filter(orientation_sensitive=None)
self.assertEqual(len(n), 3)
# -----------------------------------------------------------------------------
# misc tests
# -----------------------------------------------------------------------------
def test_resample(self):
r = kivy.multistroke.resample([Vector(0, 0), Vector(1, 1)], 11)
self.assertEqual(len(r), 11)
self.assertEqual(round(r[9].x, 1), 0.9)
r = kivy.multistroke.resample(TGesture, 25)
self.assertEqual(len(r), 25)
self.assertEqual(round(r[12].x), 81)
self.assertEqual(r[12].y, 7)
self.assertEqual(TGesture[3].x, r[24].x)
self.assertEqual(TGesture[3].y, r[24].y)
def test_rotateby(self):
r = kivy.multistroke.rotate_by(NGesture, 24)
self.assertEqual(round(r[2].x, 1), 158.59999999999999)
self.assertEqual(round(r[2].y, 1), 54.899999999999999)
def test_transfer(self):
gdb1 = Recognizer(db=[self.Ninvar])
gdb2 = Recognizer()
gdb1.transfer_gesture(gdb2, name='N')
r = gdb2.recognize([Ncandidate], max_gpf=0)
self.assertEqual(r.best['name'], 'N')
self.assertTrue(r.best['score'] > 0.94 and r.best['score'] < 0.95)
def test_export_import_case_1(self):
gdb1 = Recognizer(db=[self.Ninvar])
gdb2 = Recognizer()
g = gdb1.export_gesture(name='N')
gdb2.import_gesture(g)
r = gdb2.recognize([Ncandidate], max_gpf=0)
self.assertEqual(r.best['name'], 'N')
self.assertTrue(r.best['score'] > 0.94 and r.best['score'] < 0.95)
def test_export_import_case_2(self):
from tempfile import mkstemp
import os
gdb1 = Recognizer(db=[self.Ninvar, self.Tinvar])
gdb2 = Recognizer()
fh, fn = mkstemp()
os.close(fh)
g = gdb1.export_gesture(name='N', filename=fn)
gdb2.import_gesture(filename=fn)
os.unlink(fn)
self.assertEqual(len(gdb1.db), 2)
self.assertEqual(len(gdb2.db), 1)
r = gdb2.recognize([Ncandidate], max_gpf=0)
self.assertEqual(r.best['name'], 'N')
self.assertTrue(r.best['score'] > 0.94 and r.best['score'] < 0.95)
# ------------------------------------------------------------------------
# Test protractor
# ------------------------------------------------------------------------
def test_protractor_invariant(self):
gdb = Recognizer(db=[self.Tinvar, self.Ninvar])
r = gdb.recognize([NGesture], orientation_sensitive=False,
max_gpf=0)
self.assertEqual(r.best['name'], 'N')
self.assertTrue(r.best['score'] == 1.0)
r = gdb.recognize([NGesture], orientation_sensitive=True,
max_gpf=0)
self.assertEqual(r.best['name'], None)
self.assertEqual(r.best['score'], 0)
r = gdb.recognize([Ncandidate], orientation_sensitive=False,
max_gpf=0)
self.assertEqual(r.best['name'], 'N')
self.assertTrue(r.best['score'] > 0.94 and r.best['score'] < 0.95)
def test_protractor_bound(self):
gdb = Recognizer(db=[self.Tbound, self.Nbound])
r = gdb.recognize([NGesture], orientation_sensitive=True,
max_gpf=0)
self.assertEqual(r.best['name'], 'N')
self.assertTrue(r.best['score'] >= 0.99)
r = gdb.recognize([NGesture], orientation_sensitive=False,
max_gpf=0)
self.assertEqual(r.best['name'], None)
self.assertEqual(r.best['score'], 0)
r = gdb.recognize([Ncandidate], orientation_sensitive=True,
max_gpf=0)
self.assertEqual(r.best['name'], 'N')
self.assertTrue(r.best['score'] > 0.94 and r.best['score'] < 0.95)
if __name__ == '__main__':
unittest.main()