test-kivy-app/kivy_venv/lib/python3.11/site-packages/Cython/Compiler/FusedNode.py
2024-09-15 15:12:16 +03:00

902 lines
37 KiB
Python

from __future__ import absolute_import
import copy
from . import (ExprNodes, PyrexTypes, MemoryView,
ParseTreeTransforms, StringEncoding, Errors)
from .ExprNodes import CloneNode, ProxyNode, TupleNode
from .Nodes import FuncDefNode, CFuncDefNode, StatListNode, DefNode
from ..Utils import OrderedSet
class FusedCFuncDefNode(StatListNode):
"""
This node replaces a function with fused arguments. It deep-copies the
function for every permutation of fused types, and allocates a new local
scope for it. It keeps track of the original function in self.node, and
the entry of the original function in the symbol table is given the
'fused_cfunction' attribute which points back to us.
Then when a function lookup occurs (to e.g. call it), the call can be
dispatched to the right function.
node FuncDefNode the original function
nodes [FuncDefNode] list of copies of node with different specific types
py_func DefNode the fused python function subscriptable from
Python space
__signatures__ A DictNode mapping signature specialization strings
to PyCFunction nodes
resulting_fused_function PyCFunction for the fused DefNode that delegates
to specializations
fused_func_assignment Assignment of the fused function to the function name
defaults_tuple TupleNode of defaults (letting PyCFunctionNode build
defaults would result in many different tuples)
specialized_pycfuncs List of synthesized pycfunction nodes for the
specializations
code_object CodeObjectNode shared by all specializations and the
fused function
fused_compound_types All fused (compound) types (e.g. floating[:])
"""
__signatures__ = None
resulting_fused_function = None
fused_func_assignment = None
defaults_tuple = None
decorators = None
child_attrs = StatListNode.child_attrs + [
'__signatures__', 'resulting_fused_function', 'fused_func_assignment']
def __init__(self, node, env):
super(FusedCFuncDefNode, self).__init__(node.pos)
self.nodes = []
self.node = node
is_def = isinstance(self.node, DefNode)
if is_def:
# self.node.decorators = []
self.copy_def(env)
else:
self.copy_cdef(env)
# Perform some sanity checks. If anything fails, it's a bug
for n in self.nodes:
assert not n.entry.type.is_fused
assert not n.local_scope.return_type.is_fused
if node.return_type.is_fused:
assert not n.return_type.is_fused
if not is_def and n.cfunc_declarator.optional_arg_count:
assert n.type.op_arg_struct
node.entry.fused_cfunction = self
# Copy the nodes as AnalyseDeclarationsTransform will prepend
# self.py_func to self.stats, as we only want specialized
# CFuncDefNodes in self.nodes
self.stats = self.nodes[:]
def copy_def(self, env):
"""
Create a copy of the original def or lambda function for specialized
versions.
"""
fused_compound_types = PyrexTypes.unique(
[arg.type for arg in self.node.args if arg.type.is_fused])
fused_types = self._get_fused_base_types(fused_compound_types)
permutations = PyrexTypes.get_all_specialized_permutations(fused_types)
self.fused_compound_types = fused_compound_types
if self.node.entry in env.pyfunc_entries:
env.pyfunc_entries.remove(self.node.entry)
for cname, fused_to_specific in permutations:
copied_node = copy.deepcopy(self.node)
# keep signature object identity for special casing in DefNode.analyse_declarations()
copied_node.entry.signature = self.node.entry.signature
self._specialize_function_args(copied_node.args, fused_to_specific)
copied_node.return_type = self.node.return_type.specialize(
fused_to_specific)
copied_node.analyse_declarations(env)
# copied_node.is_staticmethod = self.node.is_staticmethod
# copied_node.is_classmethod = self.node.is_classmethod
self.create_new_local_scope(copied_node, env, fused_to_specific)
self.specialize_copied_def(copied_node, cname, self.node.entry,
fused_to_specific, fused_compound_types)
PyrexTypes.specialize_entry(copied_node.entry, cname)
copied_node.entry.used = True
env.entries[copied_node.entry.name] = copied_node.entry
if not self.replace_fused_typechecks(copied_node):
break
self.orig_py_func = self.node
self.py_func = self.make_fused_cpdef(self.node, env, is_def=True)
def copy_cdef(self, env):
"""
Create a copy of the original c(p)def function for all specialized
versions.
"""
permutations = self.node.type.get_all_specialized_permutations()
# print 'Node %s has %d specializations:' % (self.node.entry.name,
# len(permutations))
# import pprint; pprint.pprint([d for cname, d in permutations])
# Prevent copying of the python function
self.orig_py_func = orig_py_func = self.node.py_func
self.node.py_func = None
if orig_py_func:
env.pyfunc_entries.remove(orig_py_func.entry)
fused_types = self.node.type.get_fused_types()
self.fused_compound_types = fused_types
new_cfunc_entries = []
for cname, fused_to_specific in permutations:
copied_node = copy.deepcopy(self.node)
# Make the types in our CFuncType specific.
type = copied_node.type.specialize(fused_to_specific)
entry = copied_node.entry
type.specialize_entry(entry, cname)
# Reuse existing Entries (e.g. from .pxd files).
for i, orig_entry in enumerate(env.cfunc_entries):
if entry.cname == orig_entry.cname and type.same_as_resolved_type(orig_entry.type):
copied_node.entry = env.cfunc_entries[i]
if not copied_node.entry.func_cname:
copied_node.entry.func_cname = entry.func_cname
entry = copied_node.entry
type = entry.type
break
else:
new_cfunc_entries.append(entry)
copied_node.type = type
entry.type, type.entry = type, entry
entry.used = (entry.used or
self.node.entry.defined_in_pxd or
env.is_c_class_scope or
entry.is_cmethod)
if self.node.cfunc_declarator.optional_arg_count:
self.node.cfunc_declarator.declare_optional_arg_struct(
type, env, fused_cname=cname)
copied_node.return_type = type.return_type
self.create_new_local_scope(copied_node, env, fused_to_specific)
# Make the argument types in the CFuncDeclarator specific
self._specialize_function_args(copied_node.cfunc_declarator.args,
fused_to_specific)
# If a cpdef, declare all specialized cpdefs (this
# also calls analyse_declarations)
copied_node.declare_cpdef_wrapper(env)
if copied_node.py_func:
env.pyfunc_entries.remove(copied_node.py_func.entry)
self.specialize_copied_def(
copied_node.py_func, cname, self.node.entry.as_variable,
fused_to_specific, fused_types)
if not self.replace_fused_typechecks(copied_node):
break
# replace old entry with new entries
try:
cindex = env.cfunc_entries.index(self.node.entry)
except ValueError:
env.cfunc_entries.extend(new_cfunc_entries)
else:
env.cfunc_entries[cindex:cindex+1] = new_cfunc_entries
if orig_py_func:
self.py_func = self.make_fused_cpdef(orig_py_func, env,
is_def=False)
else:
self.py_func = orig_py_func
def _get_fused_base_types(self, fused_compound_types):
"""
Get a list of unique basic fused types, from a list of
(possibly) compound fused types.
"""
base_types = []
seen = set()
for fused_type in fused_compound_types:
fused_type.get_fused_types(result=base_types, seen=seen)
return base_types
def _specialize_function_args(self, args, fused_to_specific):
for arg in args:
if arg.type.is_fused:
arg.type = arg.type.specialize(fused_to_specific)
if arg.type.is_memoryviewslice:
arg.type.validate_memslice_dtype(arg.pos)
def create_new_local_scope(self, node, env, f2s):
"""
Create a new local scope for the copied node and append it to
self.nodes. A new local scope is needed because the arguments with the
fused types are already in the local scope, and we need the specialized
entries created after analyse_declarations on each specialized version
of the (CFunc)DefNode.
f2s is a dict mapping each fused type to its specialized version
"""
node.create_local_scope(env)
node.local_scope.fused_to_specific = f2s
# This is copied from the original function, set it to false to
# stop recursion
node.has_fused_arguments = False
self.nodes.append(node)
def specialize_copied_def(self, node, cname, py_entry, f2s, fused_compound_types):
"""Specialize the copy of a DefNode given the copied node,
the specialization cname and the original DefNode entry"""
fused_types = self._get_fused_base_types(fused_compound_types)
type_strings = [
PyrexTypes.specialization_signature_string(fused_type, f2s)
for fused_type in fused_types
]
node.specialized_signature_string = '|'.join(type_strings)
node.entry.pymethdef_cname = PyrexTypes.get_fused_cname(
cname, node.entry.pymethdef_cname)
node.entry.doc = py_entry.doc
node.entry.doc_cname = py_entry.doc_cname
def replace_fused_typechecks(self, copied_node):
"""
Branch-prune fused type checks like
if fused_t is int:
...
Returns whether an error was issued and whether we should stop in
in order to prevent a flood of errors.
"""
num_errors = Errors.num_errors
transform = ParseTreeTransforms.ReplaceFusedTypeChecks(
copied_node.local_scope)
transform(copied_node)
if Errors.num_errors > num_errors:
return False
return True
def _fused_instance_checks(self, normal_types, pyx_code, env):
"""
Generate Cython code for instance checks, matching an object to
specialized types.
"""
for specialized_type in normal_types:
# all_numeric = all_numeric and specialized_type.is_numeric
pyx_code.context.update(
py_type_name=specialized_type.py_type_name(),
specialized_type_name=specialized_type.specialization_string,
)
pyx_code.put_chunk(
u"""
if isinstance(arg, {{py_type_name}}):
dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'; break
""")
def _dtype_name(self, dtype):
if dtype.is_typedef:
return '___pyx_%s' % dtype
return str(dtype).replace(' ', '_')
def _dtype_type(self, dtype):
if dtype.is_typedef:
return self._dtype_name(dtype)
return str(dtype)
def _sizeof_dtype(self, dtype):
if dtype.is_pyobject:
return 'sizeof(void *)'
else:
return "sizeof(%s)" % self._dtype_type(dtype)
def _buffer_check_numpy_dtype_setup_cases(self, pyx_code):
"Setup some common cases to match dtypes against specializations"
if pyx_code.indenter("if kind in b'iu':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_int")
pyx_code.dedent()
if pyx_code.indenter("elif kind == b'f':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_float")
pyx_code.dedent()
if pyx_code.indenter("elif kind == b'c':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_complex")
pyx_code.dedent()
if pyx_code.indenter("elif kind == b'O':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_object")
pyx_code.dedent()
match = "dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'"
no_match = "dest_sig[{{dest_sig_idx}}] = None"
def _buffer_check_numpy_dtype(self, pyx_code, specialized_buffer_types, pythran_types):
"""
Match a numpy dtype object to the individual specializations.
"""
self._buffer_check_numpy_dtype_setup_cases(pyx_code)
for specialized_type in pythran_types+specialized_buffer_types:
final_type = specialized_type
if specialized_type.is_pythran_expr:
specialized_type = specialized_type.org_buffer
dtype = specialized_type.dtype
pyx_code.context.update(
itemsize_match=self._sizeof_dtype(dtype) + " == itemsize",
signed_match="not (%s_is_signed ^ dtype_signed)" % self._dtype_name(dtype),
dtype=dtype,
specialized_type_name=final_type.specialization_string)
dtypes = [
(dtype.is_int, pyx_code.dtype_int),
(dtype.is_float, pyx_code.dtype_float),
(dtype.is_complex, pyx_code.dtype_complex)
]
for dtype_category, codewriter in dtypes:
if dtype_category:
cond = '{{itemsize_match}} and (<Py_ssize_t>arg.ndim) == %d' % (
specialized_type.ndim,)
if dtype.is_int:
cond += ' and {{signed_match}}'
if final_type.is_pythran_expr:
cond += ' and arg_is_pythran_compatible'
if codewriter.indenter("if %s:" % cond):
#codewriter.putln("print 'buffer match found based on numpy dtype'")
codewriter.putln(self.match)
codewriter.putln("break")
codewriter.dedent()
def _buffer_parse_format_string_check(self, pyx_code, decl_code,
specialized_type, env):
"""
For each specialized type, try to coerce the object to a memoryview
slice of that type. This means obtaining a buffer and parsing the
format string.
TODO: separate buffer acquisition from format parsing
"""
dtype = specialized_type.dtype
if specialized_type.is_buffer:
axes = [('direct', 'strided')] * specialized_type.ndim
else:
axes = specialized_type.axes
memslice_type = PyrexTypes.MemoryViewSliceType(dtype, axes)
memslice_type.create_from_py_utility_code(env)
pyx_code.context.update(
coerce_from_py_func=memslice_type.from_py_function,
dtype=dtype)
decl_code.putln(
"{{memviewslice_cname}} {{coerce_from_py_func}}(object, int)")
pyx_code.context.update(
specialized_type_name=specialized_type.specialization_string,
sizeof_dtype=self._sizeof_dtype(dtype))
pyx_code.put_chunk(
u"""
# try {{dtype}}
if itemsize == -1 or itemsize == {{sizeof_dtype}}:
memslice = {{coerce_from_py_func}}(arg, 0)
if memslice.memview:
__PYX_XDEC_MEMVIEW(&memslice, 1)
# print 'found a match for the buffer through format parsing'
%s
break
else:
__pyx_PyErr_Clear()
""" % self.match)
def _buffer_checks(self, buffer_types, pythran_types, pyx_code, decl_code, env):
"""
Generate Cython code to match objects to buffer specializations.
First try to get a numpy dtype object and match it against the individual
specializations. If that fails, try naively to coerce the object
to each specialization, which obtains the buffer each time and tries
to match the format string.
"""
# The first thing to find a match in this loop breaks out of the loop
pyx_code.put_chunk(
u"""
""" + (u"arg_is_pythran_compatible = False" if pythran_types else u"") + u"""
if ndarray is not None:
if isinstance(arg, ndarray):
dtype = arg.dtype
""" + (u"arg_is_pythran_compatible = True" if pythran_types else u"") + u"""
elif __pyx_memoryview_check(arg):
arg_base = arg.base
if isinstance(arg_base, ndarray):
dtype = arg_base.dtype
else:
dtype = None
else:
dtype = None
itemsize = -1
if dtype is not None:
itemsize = dtype.itemsize
kind = ord(dtype.kind)
dtype_signed = kind == 'i'
""")
pyx_code.indent(2)
if pythran_types:
pyx_code.put_chunk(
u"""
# Pythran only supports the endianness of the current compiler
byteorder = dtype.byteorder
if byteorder == "<" and not __Pyx_Is_Little_Endian():
arg_is_pythran_compatible = False
elif byteorder == ">" and __Pyx_Is_Little_Endian():
arg_is_pythran_compatible = False
if arg_is_pythran_compatible:
cur_stride = itemsize
shape = arg.shape
strides = arg.strides
for i in range(arg.ndim-1, -1, -1):
if (<Py_ssize_t>strides[i]) != cur_stride:
arg_is_pythran_compatible = False
break
cur_stride *= <Py_ssize_t> shape[i]
else:
arg_is_pythran_compatible = not (arg.flags.f_contiguous and (<Py_ssize_t>arg.ndim) > 1)
""")
pyx_code.named_insertion_point("numpy_dtype_checks")
self._buffer_check_numpy_dtype(pyx_code, buffer_types, pythran_types)
pyx_code.dedent(2)
for specialized_type in buffer_types:
self._buffer_parse_format_string_check(
pyx_code, decl_code, specialized_type, env)
def _buffer_declarations(self, pyx_code, decl_code, all_buffer_types, pythran_types):
"""
If we have any buffer specializations, write out some variable
declarations and imports.
"""
decl_code.put_chunk(
u"""
ctypedef struct {{memviewslice_cname}}:
void *memview
void __PYX_XDEC_MEMVIEW({{memviewslice_cname}} *, int have_gil)
bint __pyx_memoryview_check(object)
""")
pyx_code.local_variable_declarations.put_chunk(
u"""
cdef {{memviewslice_cname}} memslice
cdef Py_ssize_t itemsize
cdef bint dtype_signed
cdef char kind
itemsize = -1
""")
if pythran_types:
pyx_code.local_variable_declarations.put_chunk(u"""
cdef bint arg_is_pythran_compatible
cdef Py_ssize_t cur_stride
""")
pyx_code.imports.put_chunk(
u"""
cdef type ndarray
ndarray = __Pyx_ImportNumPyArrayTypeIfAvailable()
""")
seen_typedefs = set()
seen_int_dtypes = set()
for buffer_type in all_buffer_types:
dtype = buffer_type.dtype
dtype_name = self._dtype_name(dtype)
if dtype.is_typedef:
if dtype_name not in seen_typedefs:
seen_typedefs.add(dtype_name)
decl_code.putln(
'ctypedef %s %s "%s"' % (dtype.resolve(), dtype_name,
dtype.empty_declaration_code()))
if buffer_type.dtype.is_int:
if str(dtype) not in seen_int_dtypes:
seen_int_dtypes.add(str(dtype))
pyx_code.context.update(dtype_name=dtype_name,
dtype_type=self._dtype_type(dtype))
pyx_code.local_variable_declarations.put_chunk(
u"""
cdef bint {{dtype_name}}_is_signed
{{dtype_name}}_is_signed = not (<{{dtype_type}}> -1 > 0)
""")
def _split_fused_types(self, arg):
"""
Specialize fused types and split into normal types and buffer types.
"""
specialized_types = PyrexTypes.get_specialized_types(arg.type)
# Prefer long over int, etc by sorting (see type classes in PyrexTypes.py)
specialized_types.sort()
seen_py_type_names = set()
normal_types, buffer_types, pythran_types = [], [], []
has_object_fallback = False
for specialized_type in specialized_types:
py_type_name = specialized_type.py_type_name()
if py_type_name:
if py_type_name in seen_py_type_names:
continue
seen_py_type_names.add(py_type_name)
if py_type_name == 'object':
has_object_fallback = True
else:
normal_types.append(specialized_type)
elif specialized_type.is_pythran_expr:
pythran_types.append(specialized_type)
elif specialized_type.is_buffer or specialized_type.is_memoryviewslice:
buffer_types.append(specialized_type)
return normal_types, buffer_types, pythran_types, has_object_fallback
def _unpack_argument(self, pyx_code):
pyx_code.put_chunk(
u"""
# PROCESSING ARGUMENT {{arg_tuple_idx}}
if {{arg_tuple_idx}} < len(<tuple>args):
arg = (<tuple>args)[{{arg_tuple_idx}}]
elif kwargs is not None and '{{arg.name}}' in <dict>kwargs:
arg = (<dict>kwargs)['{{arg.name}}']
else:
{{if arg.default}}
arg = (<tuple>defaults)[{{default_idx}}]
{{else}}
{{if arg_tuple_idx < min_positional_args}}
raise TypeError("Expected at least %d argument%s, got %d" % (
{{min_positional_args}}, {{'"s"' if min_positional_args != 1 else '""'}}, len(<tuple>args)))
{{else}}
raise TypeError("Missing keyword-only argument: '%s'" % "{{arg.default}}")
{{endif}}
{{endif}}
""")
def make_fused_cpdef(self, orig_py_func, env, is_def):
"""
This creates the function that is indexable from Python and does
runtime dispatch based on the argument types. The function gets the
arg tuple and kwargs dict (or None) and the defaults tuple
as arguments from the Binding Fused Function's tp_call.
"""
from . import TreeFragment, Code, UtilityCode
fused_types = self._get_fused_base_types([
arg.type for arg in self.node.args if arg.type.is_fused])
context = {
'memviewslice_cname': MemoryView.memviewslice_cname,
'func_args': self.node.args,
'n_fused': len(fused_types),
'min_positional_args':
self.node.num_required_args - self.node.num_required_kw_args
if is_def else
sum(1 for arg in self.node.args if arg.default is None),
'name': orig_py_func.entry.name,
}
pyx_code = Code.PyxCodeWriter(context=context)
decl_code = Code.PyxCodeWriter(context=context)
decl_code.put_chunk(
u"""
cdef extern from *:
void __pyx_PyErr_Clear "PyErr_Clear" ()
type __Pyx_ImportNumPyArrayTypeIfAvailable()
int __Pyx_Is_Little_Endian()
""")
decl_code.indent()
pyx_code.put_chunk(
u"""
def __pyx_fused_cpdef(signatures, args, kwargs, defaults):
# FIXME: use a typed signature - currently fails badly because
# default arguments inherit the types we specify here!
dest_sig = [None] * {{n_fused}}
if kwargs is not None and not kwargs:
kwargs = None
cdef Py_ssize_t i
# instance check body
""")
pyx_code.indent() # indent following code to function body
pyx_code.named_insertion_point("imports")
pyx_code.named_insertion_point("func_defs")
pyx_code.named_insertion_point("local_variable_declarations")
fused_index = 0
default_idx = 0
all_buffer_types = OrderedSet()
seen_fused_types = set()
for i, arg in enumerate(self.node.args):
if arg.type.is_fused:
arg_fused_types = arg.type.get_fused_types()
if len(arg_fused_types) > 1:
raise NotImplementedError("Determination of more than one fused base "
"type per argument is not implemented.")
fused_type = arg_fused_types[0]
if arg.type.is_fused and fused_type not in seen_fused_types:
seen_fused_types.add(fused_type)
context.update(
arg_tuple_idx=i,
arg=arg,
dest_sig_idx=fused_index,
default_idx=default_idx,
)
normal_types, buffer_types, pythran_types, has_object_fallback = self._split_fused_types(arg)
self._unpack_argument(pyx_code)
# 'unrolled' loop, first match breaks out of it
if pyx_code.indenter("while 1:"):
if normal_types:
self._fused_instance_checks(normal_types, pyx_code, env)
if buffer_types or pythran_types:
env.use_utility_code(Code.UtilityCode.load_cached("IsLittleEndian", "ModuleSetupCode.c"))
self._buffer_checks(buffer_types, pythran_types, pyx_code, decl_code, env)
if has_object_fallback:
pyx_code.context.update(specialized_type_name='object')
pyx_code.putln(self.match)
else:
pyx_code.putln(self.no_match)
pyx_code.putln("break")
pyx_code.dedent()
fused_index += 1
all_buffer_types.update(buffer_types)
all_buffer_types.update(ty.org_buffer for ty in pythran_types)
if arg.default:
default_idx += 1
if all_buffer_types:
self._buffer_declarations(pyx_code, decl_code, all_buffer_types, pythran_types)
env.use_utility_code(Code.UtilityCode.load_cached("Import", "ImportExport.c"))
env.use_utility_code(Code.UtilityCode.load_cached("ImportNumPyArray", "ImportExport.c"))
pyx_code.put_chunk(
u"""
candidates = []
for sig in <dict>signatures:
match_found = False
src_sig = sig.strip('()').split('|')
for i in range(len(dest_sig)):
dst_type = dest_sig[i]
if dst_type is not None:
if src_sig[i] == dst_type:
match_found = True
else:
match_found = False
break
if match_found:
candidates.append(sig)
if not candidates:
raise TypeError("No matching signature found")
elif len(candidates) > 1:
raise TypeError("Function call with ambiguous argument types")
else:
return (<dict>signatures)[candidates[0]]
""")
fragment_code = pyx_code.getvalue()
# print decl_code.getvalue()
# print fragment_code
from .Optimize import ConstantFolding
fragment = TreeFragment.TreeFragment(
fragment_code, level='module', pipeline=[ConstantFolding()])
ast = TreeFragment.SetPosTransform(self.node.pos)(fragment.root)
UtilityCode.declare_declarations_in_scope(
decl_code.getvalue(), env.global_scope())
ast.scope = env
# FIXME: for static methods of cdef classes, we build the wrong signature here: first arg becomes 'self'
ast.analyse_declarations(env)
py_func = ast.stats[-1] # the DefNode
self.fragment_scope = ast.scope
if isinstance(self.node, DefNode):
py_func.specialized_cpdefs = self.nodes[:]
else:
py_func.specialized_cpdefs = [n.py_func for n in self.nodes]
return py_func
def update_fused_defnode_entry(self, env):
copy_attributes = (
'name', 'pos', 'cname', 'func_cname', 'pyfunc_cname',
'pymethdef_cname', 'doc', 'doc_cname', 'is_member',
'scope'
)
entry = self.py_func.entry
for attr in copy_attributes:
setattr(entry, attr,
getattr(self.orig_py_func.entry, attr))
self.py_func.name = self.orig_py_func.name
self.py_func.doc = self.orig_py_func.doc
env.entries.pop('__pyx_fused_cpdef', None)
if isinstance(self.node, DefNode):
env.entries[entry.name] = entry
else:
env.entries[entry.name].as_variable = entry
env.pyfunc_entries.append(entry)
self.py_func.entry.fused_cfunction = self
for node in self.nodes:
if isinstance(self.node, DefNode):
node.fused_py_func = self.py_func
else:
node.py_func.fused_py_func = self.py_func
node.entry.as_variable = entry
self.synthesize_defnodes()
self.stats.append(self.__signatures__)
def analyse_expressions(self, env):
"""
Analyse the expressions. Take care to only evaluate default arguments
once and clone the result for all specializations
"""
for fused_compound_type in self.fused_compound_types:
for fused_type in fused_compound_type.get_fused_types():
for specialization_type in fused_type.types:
if specialization_type.is_complex:
specialization_type.create_declaration_utility_code(env)
if self.py_func:
self.__signatures__ = self.__signatures__.analyse_expressions(env)
self.py_func = self.py_func.analyse_expressions(env)
self.resulting_fused_function = self.resulting_fused_function.analyse_expressions(env)
self.fused_func_assignment = self.fused_func_assignment.analyse_expressions(env)
self.defaults = defaults = []
for arg in self.node.args:
if arg.default:
arg.default = arg.default.analyse_expressions(env)
defaults.append(ProxyNode(arg.default))
else:
defaults.append(None)
for i, stat in enumerate(self.stats):
stat = self.stats[i] = stat.analyse_expressions(env)
if isinstance(stat, FuncDefNode):
for arg, default in zip(stat.args, defaults):
if default is not None:
arg.default = CloneNode(default).coerce_to(arg.type, env)
if self.py_func:
args = [CloneNode(default) for default in defaults if default]
self.defaults_tuple = TupleNode(self.pos, args=args)
self.defaults_tuple = self.defaults_tuple.analyse_types(env, skip_children=True).coerce_to_pyobject(env)
self.defaults_tuple = ProxyNode(self.defaults_tuple)
self.code_object = ProxyNode(self.specialized_pycfuncs[0].code_object)
fused_func = self.resulting_fused_function.arg
fused_func.defaults_tuple = CloneNode(self.defaults_tuple)
fused_func.code_object = CloneNode(self.code_object)
for i, pycfunc in enumerate(self.specialized_pycfuncs):
pycfunc.code_object = CloneNode(self.code_object)
pycfunc = self.specialized_pycfuncs[i] = pycfunc.analyse_types(env)
pycfunc.defaults_tuple = CloneNode(self.defaults_tuple)
return self
def synthesize_defnodes(self):
"""
Create the __signatures__ dict of PyCFunctionNode specializations.
"""
if isinstance(self.nodes[0], CFuncDefNode):
nodes = [node.py_func for node in self.nodes]
else:
nodes = self.nodes
signatures = [StringEncoding.EncodedString(node.specialized_signature_string)
for node in nodes]
keys = [ExprNodes.StringNode(node.pos, value=sig)
for node, sig in zip(nodes, signatures)]
values = [ExprNodes.PyCFunctionNode.from_defnode(node, binding=True)
for node in nodes]
self.__signatures__ = ExprNodes.DictNode.from_pairs(self.pos, zip(keys, values))
self.specialized_pycfuncs = values
for pycfuncnode in values:
pycfuncnode.is_specialization = True
def generate_function_definitions(self, env, code):
if self.py_func:
self.py_func.pymethdef_required = True
self.fused_func_assignment.generate_function_definitions(env, code)
for stat in self.stats:
if isinstance(stat, FuncDefNode) and stat.entry.used:
code.mark_pos(stat.pos)
stat.generate_function_definitions(env, code)
def generate_execution_code(self, code):
# Note: all def function specialization are wrapped in PyCFunction
# nodes in the self.__signatures__ dictnode.
for default in self.defaults:
if default is not None:
default.generate_evaluation_code(code)
if self.py_func:
self.defaults_tuple.generate_evaluation_code(code)
self.code_object.generate_evaluation_code(code)
for stat in self.stats:
code.mark_pos(stat.pos)
if isinstance(stat, ExprNodes.ExprNode):
stat.generate_evaluation_code(code)
else:
stat.generate_execution_code(code)
if self.__signatures__:
self.resulting_fused_function.generate_evaluation_code(code)
code.putln(
"((__pyx_FusedFunctionObject *) %s)->__signatures__ = %s;" %
(self.resulting_fused_function.result(),
self.__signatures__.result()))
code.put_giveref(self.__signatures__.result())
self.__signatures__.generate_post_assignment_code(code)
self.__signatures__.free_temps(code)
self.fused_func_assignment.generate_execution_code(code)
# Dispose of results
self.resulting_fused_function.generate_disposal_code(code)
self.resulting_fused_function.free_temps(code)
self.defaults_tuple.generate_disposal_code(code)
self.defaults_tuple.free_temps(code)
self.code_object.generate_disposal_code(code)
self.code_object.free_temps(code)
for default in self.defaults:
if default is not None:
default.generate_disposal_code(code)
default.free_temps(code)
def annotate(self, code):
for stat in self.stats:
stat.annotate(code)