first commit
This commit is contained in:
commit
417e54da96
5696 changed files with 900003 additions and 0 deletions
|
@ -0,0 +1,73 @@
|
|||
# :Id: $Id: __init__.py 9516 2024-01-15 16:11:08Z milde $
|
||||
# :Author: Guenter Milde.
|
||||
# :License: Released under the terms of the `2-Clause BSD license`_, in short:
|
||||
#
|
||||
# Copying and distribution of this file, with or without modification,
|
||||
# are permitted in any medium without royalty provided the copyright
|
||||
# notice and this notice are preserved.
|
||||
# This file is offered as-is, without any warranty.
|
||||
#
|
||||
# .. _2-Clause BSD license: https://opensource.org/licenses/BSD-2-Clause
|
||||
|
||||
"""
|
||||
This is the Docutils (Python Documentation Utilities) "math" sub-package.
|
||||
|
||||
It contains various modules for conversion between different math formats
|
||||
(LaTeX, MathML, HTML).
|
||||
|
||||
:math2html: LaTeX math -> HTML conversion from eLyXer
|
||||
:latex2mathml: LaTeX math -> presentational MathML
|
||||
:unichar2tex: Unicode character to LaTeX math translation table
|
||||
:tex2unichar: LaTeX math to Unicode character translation dictionaries
|
||||
:mathalphabet2unichar: LaTeX math alphabets to Unicode character translation
|
||||
:tex2mathml_extern: Wrapper for 3rd party TeX -> MathML converters
|
||||
"""
|
||||
|
||||
# helpers for Docutils math support
|
||||
# =================================
|
||||
|
||||
|
||||
class MathError(ValueError):
|
||||
"""Exception for math syntax and math conversion errors.
|
||||
|
||||
The additional attribute `details` may hold a list of Docutils
|
||||
nodes suitable as children for a ``<system_message>``.
|
||||
"""
|
||||
def __init__(self, msg, details=[]):
|
||||
super().__init__(msg)
|
||||
self.details = details
|
||||
|
||||
|
||||
def toplevel_code(code):
|
||||
"""Return string (LaTeX math) `code` with environments stripped out."""
|
||||
chunks = code.split(r'\begin{')
|
||||
return r'\begin{'.join(chunk.split(r'\end{')[-1]
|
||||
for chunk in chunks)
|
||||
|
||||
|
||||
def pick_math_environment(code, numbered=False):
|
||||
"""Return the right math environment to display `code`.
|
||||
|
||||
The test simply looks for line-breaks (``\\``) outside environments.
|
||||
Multi-line formulae are set with ``align``, one-liners with
|
||||
``equation``.
|
||||
|
||||
If `numbered` evaluates to ``False``, the "starred" versions are used
|
||||
to suppress numbering.
|
||||
"""
|
||||
if toplevel_code(code).find(r'\\') >= 0:
|
||||
env = 'align'
|
||||
else:
|
||||
env = 'equation'
|
||||
if not numbered:
|
||||
env += '*'
|
||||
return env
|
||||
|
||||
|
||||
def wrap_math_code(code, as_block):
|
||||
# Wrap math-code in mode-switching TeX command/environment.
|
||||
# If `as_block` is True, use environment for displayed equation(s).
|
||||
if as_block:
|
||||
env = pick_math_environment(code)
|
||||
return '\\begin{%s}\n%s\n\\end{%s}' % (env, code, env)
|
||||
return '$%s$' % code
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
File diff suppressed because it is too large
Load diff
3165
kivy_venv/lib/python3.11/site-packages/docutils/utils/math/math2html.py
Executable file
3165
kivy_venv/lib/python3.11/site-packages/docutils/utils/math/math2html.py
Executable file
File diff suppressed because it is too large
Load diff
|
@ -0,0 +1,892 @@
|
|||
#!/usr/bin/env python3
|
||||
#
|
||||
# LaTeX math to Unicode symbols translation dictionaries for
|
||||
# the content of math alphabet commands (\mathtt, \mathbf, ...).
|
||||
# Generated with ``write_mathalphabet2unichar.py`` from the data in
|
||||
# http://milde.users.sourceforge.net/LUCR/Math/
|
||||
#
|
||||
# :Copyright: © 2024 Günter Milde.
|
||||
# :License: Released under the terms of the `2-Clause BSD license`__, in short:
|
||||
#
|
||||
# Copying and distribution of this file, with or without modification,
|
||||
# are permitted in any medium without royalty provided the copyright
|
||||
# notice and this notice are preserved.
|
||||
# This file is offered as-is, without any warranty.
|
||||
#
|
||||
# __ https://opensource.org/licenses/BSD-2-Clause
|
||||
|
||||
mathbb = {
|
||||
'0': '\U0001d7d8', # 𝟘 MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO
|
||||
'1': '\U0001d7d9', # 𝟙 MATHEMATICAL DOUBLE-STRUCK DIGIT ONE
|
||||
'2': '\U0001d7da', # 𝟚 MATHEMATICAL DOUBLE-STRUCK DIGIT TWO
|
||||
'3': '\U0001d7db', # 𝟛 MATHEMATICAL DOUBLE-STRUCK DIGIT THREE
|
||||
'4': '\U0001d7dc', # 𝟜 MATHEMATICAL DOUBLE-STRUCK DIGIT FOUR
|
||||
'5': '\U0001d7dd', # 𝟝 MATHEMATICAL DOUBLE-STRUCK DIGIT FIVE
|
||||
'6': '\U0001d7de', # 𝟞 MATHEMATICAL DOUBLE-STRUCK DIGIT SIX
|
||||
'7': '\U0001d7df', # 𝟟 MATHEMATICAL DOUBLE-STRUCK DIGIT SEVEN
|
||||
'8': '\U0001d7e0', # 𝟠 MATHEMATICAL DOUBLE-STRUCK DIGIT EIGHT
|
||||
'9': '\U0001d7e1', # 𝟡 MATHEMATICAL DOUBLE-STRUCK DIGIT NINE
|
||||
'A': '\U0001d538', # 𝔸 MATHEMATICAL DOUBLE-STRUCK CAPITAL A
|
||||
'B': '\U0001d539', # 𝔹 MATHEMATICAL DOUBLE-STRUCK CAPITAL B
|
||||
'C': '\u2102', # ℂ DOUBLE-STRUCK CAPITAL C
|
||||
'D': '\U0001d53b', # 𝔻 MATHEMATICAL DOUBLE-STRUCK CAPITAL D
|
||||
'E': '\U0001d53c', # 𝔼 MATHEMATICAL DOUBLE-STRUCK CAPITAL E
|
||||
'F': '\U0001d53d', # 𝔽 MATHEMATICAL DOUBLE-STRUCK CAPITAL F
|
||||
'G': '\U0001d53e', # 𝔾 MATHEMATICAL DOUBLE-STRUCK CAPITAL G
|
||||
'H': '\u210d', # ℍ DOUBLE-STRUCK CAPITAL H
|
||||
'I': '\U0001d540', # 𝕀 MATHEMATICAL DOUBLE-STRUCK CAPITAL I
|
||||
'J': '\U0001d541', # 𝕁 MATHEMATICAL DOUBLE-STRUCK CAPITAL J
|
||||
'K': '\U0001d542', # 𝕂 MATHEMATICAL DOUBLE-STRUCK CAPITAL K
|
||||
'L': '\U0001d543', # 𝕃 MATHEMATICAL DOUBLE-STRUCK CAPITAL L
|
||||
'M': '\U0001d544', # 𝕄 MATHEMATICAL DOUBLE-STRUCK CAPITAL M
|
||||
'N': '\u2115', # ℕ DOUBLE-STRUCK CAPITAL N
|
||||
'O': '\U0001d546', # 𝕆 MATHEMATICAL DOUBLE-STRUCK CAPITAL O
|
||||
'P': '\u2119', # ℙ DOUBLE-STRUCK CAPITAL P
|
||||
'Q': '\u211a', # ℚ DOUBLE-STRUCK CAPITAL Q
|
||||
'R': '\u211d', # ℝ DOUBLE-STRUCK CAPITAL R
|
||||
'S': '\U0001d54a', # 𝕊 MATHEMATICAL DOUBLE-STRUCK CAPITAL S
|
||||
'T': '\U0001d54b', # 𝕋 MATHEMATICAL DOUBLE-STRUCK CAPITAL T
|
||||
'U': '\U0001d54c', # 𝕌 MATHEMATICAL DOUBLE-STRUCK CAPITAL U
|
||||
'V': '\U0001d54d', # 𝕍 MATHEMATICAL DOUBLE-STRUCK CAPITAL V
|
||||
'W': '\U0001d54e', # 𝕎 MATHEMATICAL DOUBLE-STRUCK CAPITAL W
|
||||
'X': '\U0001d54f', # 𝕏 MATHEMATICAL DOUBLE-STRUCK CAPITAL X
|
||||
'Y': '\U0001d550', # 𝕐 MATHEMATICAL DOUBLE-STRUCK CAPITAL Y
|
||||
'Z': '\u2124', # ℤ DOUBLE-STRUCK CAPITAL Z
|
||||
'a': '\U0001d552', # 𝕒 MATHEMATICAL DOUBLE-STRUCK SMALL A
|
||||
'b': '\U0001d553', # 𝕓 MATHEMATICAL DOUBLE-STRUCK SMALL B
|
||||
'c': '\U0001d554', # 𝕔 MATHEMATICAL DOUBLE-STRUCK SMALL C
|
||||
'd': '\U0001d555', # 𝕕 MATHEMATICAL DOUBLE-STRUCK SMALL D
|
||||
'e': '\U0001d556', # 𝕖 MATHEMATICAL DOUBLE-STRUCK SMALL E
|
||||
'f': '\U0001d557', # 𝕗 MATHEMATICAL DOUBLE-STRUCK SMALL F
|
||||
'g': '\U0001d558', # 𝕘 MATHEMATICAL DOUBLE-STRUCK SMALL G
|
||||
'h': '\U0001d559', # 𝕙 MATHEMATICAL DOUBLE-STRUCK SMALL H
|
||||
'i': '\U0001d55a', # 𝕚 MATHEMATICAL DOUBLE-STRUCK SMALL I
|
||||
'j': '\U0001d55b', # 𝕛 MATHEMATICAL DOUBLE-STRUCK SMALL J
|
||||
'k': '\U0001d55c', # 𝕜 MATHEMATICAL DOUBLE-STRUCK SMALL K
|
||||
'l': '\U0001d55d', # 𝕝 MATHEMATICAL DOUBLE-STRUCK SMALL L
|
||||
'm': '\U0001d55e', # 𝕞 MATHEMATICAL DOUBLE-STRUCK SMALL M
|
||||
'n': '\U0001d55f', # 𝕟 MATHEMATICAL DOUBLE-STRUCK SMALL N
|
||||
'o': '\U0001d560', # 𝕠 MATHEMATICAL DOUBLE-STRUCK SMALL O
|
||||
'p': '\U0001d561', # 𝕡 MATHEMATICAL DOUBLE-STRUCK SMALL P
|
||||
'q': '\U0001d562', # 𝕢 MATHEMATICAL DOUBLE-STRUCK SMALL Q
|
||||
'r': '\U0001d563', # 𝕣 MATHEMATICAL DOUBLE-STRUCK SMALL R
|
||||
's': '\U0001d564', # 𝕤 MATHEMATICAL DOUBLE-STRUCK SMALL S
|
||||
't': '\U0001d565', # 𝕥 MATHEMATICAL DOUBLE-STRUCK SMALL T
|
||||
'u': '\U0001d566', # 𝕦 MATHEMATICAL DOUBLE-STRUCK SMALL U
|
||||
'v': '\U0001d567', # 𝕧 MATHEMATICAL DOUBLE-STRUCK SMALL V
|
||||
'w': '\U0001d568', # 𝕨 MATHEMATICAL DOUBLE-STRUCK SMALL W
|
||||
'x': '\U0001d569', # 𝕩 MATHEMATICAL DOUBLE-STRUCK SMALL X
|
||||
'y': '\U0001d56a', # 𝕪 MATHEMATICAL DOUBLE-STRUCK SMALL Y
|
||||
'z': '\U0001d56b', # 𝕫 MATHEMATICAL DOUBLE-STRUCK SMALL Z
|
||||
'Γ': '\u213e', # ℾ DOUBLE-STRUCK CAPITAL GAMMA
|
||||
'Π': '\u213f', # ℿ DOUBLE-STRUCK CAPITAL PI
|
||||
'Σ': '\u2140', # ⅀ DOUBLE-STRUCK N-ARY SUMMATION
|
||||
'γ': '\u213d', # ℽ DOUBLE-STRUCK SMALL GAMMA
|
||||
'π': '\u213c', # ℼ DOUBLE-STRUCK SMALL PI
|
||||
}
|
||||
|
||||
mathbf = {
|
||||
'0': '\U0001d7ce', # 𝟎 MATHEMATICAL BOLD DIGIT ZERO
|
||||
'1': '\U0001d7cf', # 𝟏 MATHEMATICAL BOLD DIGIT ONE
|
||||
'2': '\U0001d7d0', # 𝟐 MATHEMATICAL BOLD DIGIT TWO
|
||||
'3': '\U0001d7d1', # 𝟑 MATHEMATICAL BOLD DIGIT THREE
|
||||
'4': '\U0001d7d2', # 𝟒 MATHEMATICAL BOLD DIGIT FOUR
|
||||
'5': '\U0001d7d3', # 𝟓 MATHEMATICAL BOLD DIGIT FIVE
|
||||
'6': '\U0001d7d4', # 𝟔 MATHEMATICAL BOLD DIGIT SIX
|
||||
'7': '\U0001d7d5', # 𝟕 MATHEMATICAL BOLD DIGIT SEVEN
|
||||
'8': '\U0001d7d6', # 𝟖 MATHEMATICAL BOLD DIGIT EIGHT
|
||||
'9': '\U0001d7d7', # 𝟗 MATHEMATICAL BOLD DIGIT NINE
|
||||
'A': '\U0001d400', # 𝐀 MATHEMATICAL BOLD CAPITAL A
|
||||
'B': '\U0001d401', # 𝐁 MATHEMATICAL BOLD CAPITAL B
|
||||
'C': '\U0001d402', # 𝐂 MATHEMATICAL BOLD CAPITAL C
|
||||
'D': '\U0001d403', # 𝐃 MATHEMATICAL BOLD CAPITAL D
|
||||
'E': '\U0001d404', # 𝐄 MATHEMATICAL BOLD CAPITAL E
|
||||
'F': '\U0001d405', # 𝐅 MATHEMATICAL BOLD CAPITAL F
|
||||
'G': '\U0001d406', # 𝐆 MATHEMATICAL BOLD CAPITAL G
|
||||
'H': '\U0001d407', # 𝐇 MATHEMATICAL BOLD CAPITAL H
|
||||
'I': '\U0001d408', # 𝐈 MATHEMATICAL BOLD CAPITAL I
|
||||
'J': '\U0001d409', # 𝐉 MATHEMATICAL BOLD CAPITAL J
|
||||
'K': '\U0001d40a', # 𝐊 MATHEMATICAL BOLD CAPITAL K
|
||||
'L': '\U0001d40b', # 𝐋 MATHEMATICAL BOLD CAPITAL L
|
||||
'M': '\U0001d40c', # 𝐌 MATHEMATICAL BOLD CAPITAL M
|
||||
'N': '\U0001d40d', # 𝐍 MATHEMATICAL BOLD CAPITAL N
|
||||
'O': '\U0001d40e', # 𝐎 MATHEMATICAL BOLD CAPITAL O
|
||||
'P': '\U0001d40f', # 𝐏 MATHEMATICAL BOLD CAPITAL P
|
||||
'Q': '\U0001d410', # 𝐐 MATHEMATICAL BOLD CAPITAL Q
|
||||
'R': '\U0001d411', # 𝐑 MATHEMATICAL BOLD CAPITAL R
|
||||
'S': '\U0001d412', # 𝐒 MATHEMATICAL BOLD CAPITAL S
|
||||
'T': '\U0001d413', # 𝐓 MATHEMATICAL BOLD CAPITAL T
|
||||
'U': '\U0001d414', # 𝐔 MATHEMATICAL BOLD CAPITAL U
|
||||
'V': '\U0001d415', # 𝐕 MATHEMATICAL BOLD CAPITAL V
|
||||
'W': '\U0001d416', # 𝐖 MATHEMATICAL BOLD CAPITAL W
|
||||
'X': '\U0001d417', # 𝐗 MATHEMATICAL BOLD CAPITAL X
|
||||
'Y': '\U0001d418', # 𝐘 MATHEMATICAL BOLD CAPITAL Y
|
||||
'Z': '\U0001d419', # 𝐙 MATHEMATICAL BOLD CAPITAL Z
|
||||
'a': '\U0001d41a', # 𝐚 MATHEMATICAL BOLD SMALL A
|
||||
'b': '\U0001d41b', # 𝐛 MATHEMATICAL BOLD SMALL B
|
||||
'c': '\U0001d41c', # 𝐜 MATHEMATICAL BOLD SMALL C
|
||||
'd': '\U0001d41d', # 𝐝 MATHEMATICAL BOLD SMALL D
|
||||
'e': '\U0001d41e', # 𝐞 MATHEMATICAL BOLD SMALL E
|
||||
'f': '\U0001d41f', # 𝐟 MATHEMATICAL BOLD SMALL F
|
||||
'g': '\U0001d420', # 𝐠 MATHEMATICAL BOLD SMALL G
|
||||
'h': '\U0001d421', # 𝐡 MATHEMATICAL BOLD SMALL H
|
||||
'i': '\U0001d422', # 𝐢 MATHEMATICAL BOLD SMALL I
|
||||
'j': '\U0001d423', # 𝐣 MATHEMATICAL BOLD SMALL J
|
||||
'k': '\U0001d424', # 𝐤 MATHEMATICAL BOLD SMALL K
|
||||
'l': '\U0001d425', # 𝐥 MATHEMATICAL BOLD SMALL L
|
||||
'm': '\U0001d426', # 𝐦 MATHEMATICAL BOLD SMALL M
|
||||
'n': '\U0001d427', # 𝐧 MATHEMATICAL BOLD SMALL N
|
||||
'o': '\U0001d428', # 𝐨 MATHEMATICAL BOLD SMALL O
|
||||
'p': '\U0001d429', # 𝐩 MATHEMATICAL BOLD SMALL P
|
||||
'q': '\U0001d42a', # 𝐪 MATHEMATICAL BOLD SMALL Q
|
||||
'r': '\U0001d42b', # 𝐫 MATHEMATICAL BOLD SMALL R
|
||||
's': '\U0001d42c', # 𝐬 MATHEMATICAL BOLD SMALL S
|
||||
't': '\U0001d42d', # 𝐭 MATHEMATICAL BOLD SMALL T
|
||||
'u': '\U0001d42e', # 𝐮 MATHEMATICAL BOLD SMALL U
|
||||
'v': '\U0001d42f', # 𝐯 MATHEMATICAL BOLD SMALL V
|
||||
'w': '\U0001d430', # 𝐰 MATHEMATICAL BOLD SMALL W
|
||||
'x': '\U0001d431', # 𝐱 MATHEMATICAL BOLD SMALL X
|
||||
'y': '\U0001d432', # 𝐲 MATHEMATICAL BOLD SMALL Y
|
||||
'z': '\U0001d433', # 𝐳 MATHEMATICAL BOLD SMALL Z
|
||||
'Γ': '\U0001d6aa', # 𝚪 MATHEMATICAL BOLD CAPITAL GAMMA
|
||||
'Δ': '\U0001d6ab', # 𝚫 MATHEMATICAL BOLD CAPITAL DELTA
|
||||
'Θ': '\U0001d6af', # 𝚯 MATHEMATICAL BOLD CAPITAL THETA
|
||||
'Λ': '\U0001d6b2', # 𝚲 MATHEMATICAL BOLD CAPITAL LAMDA
|
||||
'Ξ': '\U0001d6b5', # 𝚵 MATHEMATICAL BOLD CAPITAL XI
|
||||
'Π': '\U0001d6b7', # 𝚷 MATHEMATICAL BOLD CAPITAL PI
|
||||
'Σ': '\U0001d6ba', # 𝚺 MATHEMATICAL BOLD CAPITAL SIGMA
|
||||
'Υ': '\U0001d6bc', # 𝚼 MATHEMATICAL BOLD CAPITAL UPSILON
|
||||
'Φ': '\U0001d6bd', # 𝚽 MATHEMATICAL BOLD CAPITAL PHI
|
||||
'Ψ': '\U0001d6bf', # 𝚿 MATHEMATICAL BOLD CAPITAL PSI
|
||||
'Ω': '\U0001d6c0', # 𝛀 MATHEMATICAL BOLD CAPITAL OMEGA
|
||||
'α': '\U0001d6c2', # 𝛂 MATHEMATICAL BOLD SMALL ALPHA
|
||||
'β': '\U0001d6c3', # 𝛃 MATHEMATICAL BOLD SMALL BETA
|
||||
'γ': '\U0001d6c4', # 𝛄 MATHEMATICAL BOLD SMALL GAMMA
|
||||
'δ': '\U0001d6c5', # 𝛅 MATHEMATICAL BOLD SMALL DELTA
|
||||
'ε': '\U0001d6c6', # 𝛆 MATHEMATICAL BOLD SMALL EPSILON
|
||||
'ζ': '\U0001d6c7', # 𝛇 MATHEMATICAL BOLD SMALL ZETA
|
||||
'η': '\U0001d6c8', # 𝛈 MATHEMATICAL BOLD SMALL ETA
|
||||
'θ': '\U0001d6c9', # 𝛉 MATHEMATICAL BOLD SMALL THETA
|
||||
'ι': '\U0001d6ca', # 𝛊 MATHEMATICAL BOLD SMALL IOTA
|
||||
'κ': '\U0001d6cb', # 𝛋 MATHEMATICAL BOLD SMALL KAPPA
|
||||
'λ': '\U0001d6cc', # 𝛌 MATHEMATICAL BOLD SMALL LAMDA
|
||||
'μ': '\U0001d6cd', # 𝛍 MATHEMATICAL BOLD SMALL MU
|
||||
'ν': '\U0001d6ce', # 𝛎 MATHEMATICAL BOLD SMALL NU
|
||||
'ξ': '\U0001d6cf', # 𝛏 MATHEMATICAL BOLD SMALL XI
|
||||
'π': '\U0001d6d1', # 𝛑 MATHEMATICAL BOLD SMALL PI
|
||||
'ρ': '\U0001d6d2', # 𝛒 MATHEMATICAL BOLD SMALL RHO
|
||||
'ς': '\U0001d6d3', # 𝛓 MATHEMATICAL BOLD SMALL FINAL SIGMA
|
||||
'σ': '\U0001d6d4', # 𝛔 MATHEMATICAL BOLD SMALL SIGMA
|
||||
'τ': '\U0001d6d5', # 𝛕 MATHEMATICAL BOLD SMALL TAU
|
||||
'υ': '\U0001d6d6', # 𝛖 MATHEMATICAL BOLD SMALL UPSILON
|
||||
'φ': '\U0001d6d7', # 𝛗 MATHEMATICAL BOLD SMALL PHI
|
||||
'χ': '\U0001d6d8', # 𝛘 MATHEMATICAL BOLD SMALL CHI
|
||||
'ψ': '\U0001d6d9', # 𝛙 MATHEMATICAL BOLD SMALL PSI
|
||||
'ω': '\U0001d6da', # 𝛚 MATHEMATICAL BOLD SMALL OMEGA
|
||||
'ϑ': '\U0001d6dd', # 𝛝 MATHEMATICAL BOLD THETA SYMBOL
|
||||
'ϕ': '\U0001d6df', # 𝛟 MATHEMATICAL BOLD PHI SYMBOL
|
||||
'ϖ': '\U0001d6e1', # 𝛡 MATHEMATICAL BOLD PI SYMBOL
|
||||
'Ϝ': '\U0001d7ca', # 𝟊 MATHEMATICAL BOLD CAPITAL DIGAMMA
|
||||
'ϝ': '\U0001d7cb', # 𝟋 MATHEMATICAL BOLD SMALL DIGAMMA
|
||||
'ϰ': '\U0001d6de', # 𝛞 MATHEMATICAL BOLD KAPPA SYMBOL
|
||||
'ϱ': '\U0001d6e0', # 𝛠 MATHEMATICAL BOLD RHO SYMBOL
|
||||
'ϵ': '\U0001d6dc', # 𝛜 MATHEMATICAL BOLD EPSILON SYMBOL
|
||||
'∂': '\U0001d6db', # 𝛛 MATHEMATICAL BOLD PARTIAL DIFFERENTIAL
|
||||
'∇': '\U0001d6c1', # 𝛁 MATHEMATICAL BOLD NABLA
|
||||
}
|
||||
|
||||
mathbfit = {
|
||||
'A': '\U0001d468', # 𝑨 MATHEMATICAL BOLD ITALIC CAPITAL A
|
||||
'B': '\U0001d469', # 𝑩 MATHEMATICAL BOLD ITALIC CAPITAL B
|
||||
'C': '\U0001d46a', # 𝑪 MATHEMATICAL BOLD ITALIC CAPITAL C
|
||||
'D': '\U0001d46b', # 𝑫 MATHEMATICAL BOLD ITALIC CAPITAL D
|
||||
'E': '\U0001d46c', # 𝑬 MATHEMATICAL BOLD ITALIC CAPITAL E
|
||||
'F': '\U0001d46d', # 𝑭 MATHEMATICAL BOLD ITALIC CAPITAL F
|
||||
'G': '\U0001d46e', # 𝑮 MATHEMATICAL BOLD ITALIC CAPITAL G
|
||||
'H': '\U0001d46f', # 𝑯 MATHEMATICAL BOLD ITALIC CAPITAL H
|
||||
'I': '\U0001d470', # 𝑰 MATHEMATICAL BOLD ITALIC CAPITAL I
|
||||
'J': '\U0001d471', # 𝑱 MATHEMATICAL BOLD ITALIC CAPITAL J
|
||||
'K': '\U0001d472', # 𝑲 MATHEMATICAL BOLD ITALIC CAPITAL K
|
||||
'L': '\U0001d473', # 𝑳 MATHEMATICAL BOLD ITALIC CAPITAL L
|
||||
'M': '\U0001d474', # 𝑴 MATHEMATICAL BOLD ITALIC CAPITAL M
|
||||
'N': '\U0001d475', # 𝑵 MATHEMATICAL BOLD ITALIC CAPITAL N
|
||||
'O': '\U0001d476', # 𝑶 MATHEMATICAL BOLD ITALIC CAPITAL O
|
||||
'P': '\U0001d477', # 𝑷 MATHEMATICAL BOLD ITALIC CAPITAL P
|
||||
'Q': '\U0001d478', # 𝑸 MATHEMATICAL BOLD ITALIC CAPITAL Q
|
||||
'R': '\U0001d479', # 𝑹 MATHEMATICAL BOLD ITALIC CAPITAL R
|
||||
'S': '\U0001d47a', # 𝑺 MATHEMATICAL BOLD ITALIC CAPITAL S
|
||||
'T': '\U0001d47b', # 𝑻 MATHEMATICAL BOLD ITALIC CAPITAL T
|
||||
'U': '\U0001d47c', # 𝑼 MATHEMATICAL BOLD ITALIC CAPITAL U
|
||||
'V': '\U0001d47d', # 𝑽 MATHEMATICAL BOLD ITALIC CAPITAL V
|
||||
'W': '\U0001d47e', # 𝑾 MATHEMATICAL BOLD ITALIC CAPITAL W
|
||||
'X': '\U0001d47f', # 𝑿 MATHEMATICAL BOLD ITALIC CAPITAL X
|
||||
'Y': '\U0001d480', # 𝒀 MATHEMATICAL BOLD ITALIC CAPITAL Y
|
||||
'Z': '\U0001d481', # 𝒁 MATHEMATICAL BOLD ITALIC CAPITAL Z
|
||||
'a': '\U0001d482', # 𝒂 MATHEMATICAL BOLD ITALIC SMALL A
|
||||
'b': '\U0001d483', # 𝒃 MATHEMATICAL BOLD ITALIC SMALL B
|
||||
'c': '\U0001d484', # 𝒄 MATHEMATICAL BOLD ITALIC SMALL C
|
||||
'd': '\U0001d485', # 𝒅 MATHEMATICAL BOLD ITALIC SMALL D
|
||||
'e': '\U0001d486', # 𝒆 MATHEMATICAL BOLD ITALIC SMALL E
|
||||
'f': '\U0001d487', # 𝒇 MATHEMATICAL BOLD ITALIC SMALL F
|
||||
'g': '\U0001d488', # 𝒈 MATHEMATICAL BOLD ITALIC SMALL G
|
||||
'h': '\U0001d489', # 𝒉 MATHEMATICAL BOLD ITALIC SMALL H
|
||||
'i': '\U0001d48a', # 𝒊 MATHEMATICAL BOLD ITALIC SMALL I
|
||||
'j': '\U0001d48b', # 𝒋 MATHEMATICAL BOLD ITALIC SMALL J
|
||||
'k': '\U0001d48c', # 𝒌 MATHEMATICAL BOLD ITALIC SMALL K
|
||||
'l': '\U0001d48d', # 𝒍 MATHEMATICAL BOLD ITALIC SMALL L
|
||||
'm': '\U0001d48e', # 𝒎 MATHEMATICAL BOLD ITALIC SMALL M
|
||||
'n': '\U0001d48f', # 𝒏 MATHEMATICAL BOLD ITALIC SMALL N
|
||||
'o': '\U0001d490', # 𝒐 MATHEMATICAL BOLD ITALIC SMALL O
|
||||
'p': '\U0001d491', # 𝒑 MATHEMATICAL BOLD ITALIC SMALL P
|
||||
'q': '\U0001d492', # 𝒒 MATHEMATICAL BOLD ITALIC SMALL Q
|
||||
'r': '\U0001d493', # 𝒓 MATHEMATICAL BOLD ITALIC SMALL R
|
||||
's': '\U0001d494', # 𝒔 MATHEMATICAL BOLD ITALIC SMALL S
|
||||
't': '\U0001d495', # 𝒕 MATHEMATICAL BOLD ITALIC SMALL T
|
||||
'u': '\U0001d496', # 𝒖 MATHEMATICAL BOLD ITALIC SMALL U
|
||||
'v': '\U0001d497', # 𝒗 MATHEMATICAL BOLD ITALIC SMALL V
|
||||
'w': '\U0001d498', # 𝒘 MATHEMATICAL BOLD ITALIC SMALL W
|
||||
'x': '\U0001d499', # 𝒙 MATHEMATICAL BOLD ITALIC SMALL X
|
||||
'y': '\U0001d49a', # 𝒚 MATHEMATICAL BOLD ITALIC SMALL Y
|
||||
'z': '\U0001d49b', # 𝒛 MATHEMATICAL BOLD ITALIC SMALL Z
|
||||
'Γ': '\U0001d71e', # 𝜞 MATHEMATICAL BOLD ITALIC CAPITAL GAMMA
|
||||
'Δ': '\U0001d71f', # 𝜟 MATHEMATICAL BOLD ITALIC CAPITAL DELTA
|
||||
'Θ': '\U0001d723', # 𝜣 MATHEMATICAL BOLD ITALIC CAPITAL THETA
|
||||
'Λ': '\U0001d726', # 𝜦 MATHEMATICAL BOLD ITALIC CAPITAL LAMDA
|
||||
'Ξ': '\U0001d729', # 𝜩 MATHEMATICAL BOLD ITALIC CAPITAL XI
|
||||
'Π': '\U0001d72b', # 𝜫 MATHEMATICAL BOLD ITALIC CAPITAL PI
|
||||
'Σ': '\U0001d72e', # 𝜮 MATHEMATICAL BOLD ITALIC CAPITAL SIGMA
|
||||
'Υ': '\U0001d730', # 𝜰 MATHEMATICAL BOLD ITALIC CAPITAL UPSILON
|
||||
'Φ': '\U0001d731', # 𝜱 MATHEMATICAL BOLD ITALIC CAPITAL PHI
|
||||
'Ψ': '\U0001d733', # 𝜳 MATHEMATICAL BOLD ITALIC CAPITAL PSI
|
||||
'Ω': '\U0001d734', # 𝜴 MATHEMATICAL BOLD ITALIC CAPITAL OMEGA
|
||||
'α': '\U0001d736', # 𝜶 MATHEMATICAL BOLD ITALIC SMALL ALPHA
|
||||
'β': '\U0001d737', # 𝜷 MATHEMATICAL BOLD ITALIC SMALL BETA
|
||||
'γ': '\U0001d738', # 𝜸 MATHEMATICAL BOLD ITALIC SMALL GAMMA
|
||||
'δ': '\U0001d739', # 𝜹 MATHEMATICAL BOLD ITALIC SMALL DELTA
|
||||
'ε': '\U0001d73a', # 𝜺 MATHEMATICAL BOLD ITALIC SMALL EPSILON
|
||||
'ζ': '\U0001d73b', # 𝜻 MATHEMATICAL BOLD ITALIC SMALL ZETA
|
||||
'η': '\U0001d73c', # 𝜼 MATHEMATICAL BOLD ITALIC SMALL ETA
|
||||
'θ': '\U0001d73d', # 𝜽 MATHEMATICAL BOLD ITALIC SMALL THETA
|
||||
'ι': '\U0001d73e', # 𝜾 MATHEMATICAL BOLD ITALIC SMALL IOTA
|
||||
'κ': '\U0001d73f', # 𝜿 MATHEMATICAL BOLD ITALIC SMALL KAPPA
|
||||
'λ': '\U0001d740', # 𝝀 MATHEMATICAL BOLD ITALIC SMALL LAMDA
|
||||
'μ': '\U0001d741', # 𝝁 MATHEMATICAL BOLD ITALIC SMALL MU
|
||||
'ν': '\U0001d742', # 𝝂 MATHEMATICAL BOLD ITALIC SMALL NU
|
||||
'ξ': '\U0001d743', # 𝝃 MATHEMATICAL BOLD ITALIC SMALL XI
|
||||
'π': '\U0001d745', # 𝝅 MATHEMATICAL BOLD ITALIC SMALL PI
|
||||
'ρ': '\U0001d746', # 𝝆 MATHEMATICAL BOLD ITALIC SMALL RHO
|
||||
'ς': '\U0001d747', # 𝝇 MATHEMATICAL BOLD ITALIC SMALL FINAL SIGMA
|
||||
'σ': '\U0001d748', # 𝝈 MATHEMATICAL BOLD ITALIC SMALL SIGMA
|
||||
'τ': '\U0001d749', # 𝝉 MATHEMATICAL BOLD ITALIC SMALL TAU
|
||||
'υ': '\U0001d74a', # 𝝊 MATHEMATICAL BOLD ITALIC SMALL UPSILON
|
||||
'φ': '\U0001d74b', # 𝝋 MATHEMATICAL BOLD ITALIC SMALL PHI
|
||||
'χ': '\U0001d74c', # 𝝌 MATHEMATICAL BOLD ITALIC SMALL CHI
|
||||
'ψ': '\U0001d74d', # 𝝍 MATHEMATICAL BOLD ITALIC SMALL PSI
|
||||
'ω': '\U0001d74e', # 𝝎 MATHEMATICAL BOLD ITALIC SMALL OMEGA
|
||||
'ϑ': '\U0001d751', # 𝝑 MATHEMATICAL BOLD ITALIC THETA SYMBOL
|
||||
'ϕ': '\U0001d753', # 𝝓 MATHEMATICAL BOLD ITALIC PHI SYMBOL
|
||||
'ϖ': '\U0001d755', # 𝝕 MATHEMATICAL BOLD ITALIC PI SYMBOL
|
||||
'ϰ': '\U0001d752', # 𝝒 MATHEMATICAL BOLD ITALIC KAPPA SYMBOL
|
||||
'ϱ': '\U0001d754', # 𝝔 MATHEMATICAL BOLD ITALIC RHO SYMBOL
|
||||
'ϵ': '\U0001d750', # 𝝐 MATHEMATICAL BOLD ITALIC EPSILON SYMBOL
|
||||
'∂': '\U0001d74f', # 𝝏 MATHEMATICAL BOLD ITALIC PARTIAL DIFFERENTIAL
|
||||
'∇': '\U0001d735', # 𝜵 MATHEMATICAL BOLD ITALIC NABLA
|
||||
}
|
||||
|
||||
mathcal = {
|
||||
'A': '\U0001d49c', # 𝒜 MATHEMATICAL SCRIPT CAPITAL A
|
||||
'B': '\u212c', # ℬ SCRIPT CAPITAL B
|
||||
'C': '\U0001d49e', # 𝒞 MATHEMATICAL SCRIPT CAPITAL C
|
||||
'D': '\U0001d49f', # 𝒟 MATHEMATICAL SCRIPT CAPITAL D
|
||||
'E': '\u2130', # ℰ SCRIPT CAPITAL E
|
||||
'F': '\u2131', # ℱ SCRIPT CAPITAL F
|
||||
'G': '\U0001d4a2', # 𝒢 MATHEMATICAL SCRIPT CAPITAL G
|
||||
'H': '\u210b', # ℋ SCRIPT CAPITAL H
|
||||
'I': '\u2110', # ℐ SCRIPT CAPITAL I
|
||||
'J': '\U0001d4a5', # 𝒥 MATHEMATICAL SCRIPT CAPITAL J
|
||||
'K': '\U0001d4a6', # 𝒦 MATHEMATICAL SCRIPT CAPITAL K
|
||||
'L': '\u2112', # ℒ SCRIPT CAPITAL L
|
||||
'M': '\u2133', # ℳ SCRIPT CAPITAL M
|
||||
'N': '\U0001d4a9', # 𝒩 MATHEMATICAL SCRIPT CAPITAL N
|
||||
'O': '\U0001d4aa', # 𝒪 MATHEMATICAL SCRIPT CAPITAL O
|
||||
'P': '\U0001d4ab', # 𝒫 MATHEMATICAL SCRIPT CAPITAL P
|
||||
'Q': '\U0001d4ac', # 𝒬 MATHEMATICAL SCRIPT CAPITAL Q
|
||||
'R': '\u211b', # ℛ SCRIPT CAPITAL R
|
||||
'S': '\U0001d4ae', # 𝒮 MATHEMATICAL SCRIPT CAPITAL S
|
||||
'T': '\U0001d4af', # 𝒯 MATHEMATICAL SCRIPT CAPITAL T
|
||||
'U': '\U0001d4b0', # 𝒰 MATHEMATICAL SCRIPT CAPITAL U
|
||||
'V': '\U0001d4b1', # 𝒱 MATHEMATICAL SCRIPT CAPITAL V
|
||||
'W': '\U0001d4b2', # 𝒲 MATHEMATICAL SCRIPT CAPITAL W
|
||||
'X': '\U0001d4b3', # 𝒳 MATHEMATICAL SCRIPT CAPITAL X
|
||||
'Y': '\U0001d4b4', # 𝒴 MATHEMATICAL SCRIPT CAPITAL Y
|
||||
'Z': '\U0001d4b5', # 𝒵 MATHEMATICAL SCRIPT CAPITAL Z
|
||||
'a': '\U0001d4b6', # 𝒶 MATHEMATICAL SCRIPT SMALL A
|
||||
'b': '\U0001d4b7', # 𝒷 MATHEMATICAL SCRIPT SMALL B
|
||||
'c': '\U0001d4b8', # 𝒸 MATHEMATICAL SCRIPT SMALL C
|
||||
'd': '\U0001d4b9', # 𝒹 MATHEMATICAL SCRIPT SMALL D
|
||||
'e': '\u212f', # ℯ SCRIPT SMALL E
|
||||
'f': '\U0001d4bb', # 𝒻 MATHEMATICAL SCRIPT SMALL F
|
||||
'g': '\u210a', # ℊ SCRIPT SMALL G
|
||||
'h': '\U0001d4bd', # 𝒽 MATHEMATICAL SCRIPT SMALL H
|
||||
'i': '\U0001d4be', # 𝒾 MATHEMATICAL SCRIPT SMALL I
|
||||
'j': '\U0001d4bf', # 𝒿 MATHEMATICAL SCRIPT SMALL J
|
||||
'k': '\U0001d4c0', # 𝓀 MATHEMATICAL SCRIPT SMALL K
|
||||
'l': '\U0001d4c1', # 𝓁 MATHEMATICAL SCRIPT SMALL L
|
||||
'm': '\U0001d4c2', # 𝓂 MATHEMATICAL SCRIPT SMALL M
|
||||
'n': '\U0001d4c3', # 𝓃 MATHEMATICAL SCRIPT SMALL N
|
||||
'o': '\u2134', # ℴ SCRIPT SMALL O
|
||||
'p': '\U0001d4c5', # 𝓅 MATHEMATICAL SCRIPT SMALL P
|
||||
'q': '\U0001d4c6', # 𝓆 MATHEMATICAL SCRIPT SMALL Q
|
||||
'r': '\U0001d4c7', # 𝓇 MATHEMATICAL SCRIPT SMALL R
|
||||
's': '\U0001d4c8', # 𝓈 MATHEMATICAL SCRIPT SMALL S
|
||||
't': '\U0001d4c9', # 𝓉 MATHEMATICAL SCRIPT SMALL T
|
||||
'u': '\U0001d4ca', # 𝓊 MATHEMATICAL SCRIPT SMALL U
|
||||
'v': '\U0001d4cb', # 𝓋 MATHEMATICAL SCRIPT SMALL V
|
||||
'w': '\U0001d4cc', # 𝓌 MATHEMATICAL SCRIPT SMALL W
|
||||
'x': '\U0001d4cd', # 𝓍 MATHEMATICAL SCRIPT SMALL X
|
||||
'y': '\U0001d4ce', # 𝓎 MATHEMATICAL SCRIPT SMALL Y
|
||||
'z': '\U0001d4cf', # 𝓏 MATHEMATICAL SCRIPT SMALL Z
|
||||
}
|
||||
|
||||
mathfrak = {
|
||||
'A': '\U0001d504', # 𝔄 MATHEMATICAL FRAKTUR CAPITAL A
|
||||
'B': '\U0001d505', # 𝔅 MATHEMATICAL FRAKTUR CAPITAL B
|
||||
'C': '\u212d', # ℭ BLACK-LETTER CAPITAL C
|
||||
'D': '\U0001d507', # 𝔇 MATHEMATICAL FRAKTUR CAPITAL D
|
||||
'E': '\U0001d508', # 𝔈 MATHEMATICAL FRAKTUR CAPITAL E
|
||||
'F': '\U0001d509', # 𝔉 MATHEMATICAL FRAKTUR CAPITAL F
|
||||
'G': '\U0001d50a', # 𝔊 MATHEMATICAL FRAKTUR CAPITAL G
|
||||
'H': '\u210c', # ℌ BLACK-LETTER CAPITAL H
|
||||
'I': '\u2111', # ℑ BLACK-LETTER CAPITAL I
|
||||
'J': '\U0001d50d', # 𝔍 MATHEMATICAL FRAKTUR CAPITAL J
|
||||
'K': '\U0001d50e', # 𝔎 MATHEMATICAL FRAKTUR CAPITAL K
|
||||
'L': '\U0001d50f', # 𝔏 MATHEMATICAL FRAKTUR CAPITAL L
|
||||
'M': '\U0001d510', # 𝔐 MATHEMATICAL FRAKTUR CAPITAL M
|
||||
'N': '\U0001d511', # 𝔑 MATHEMATICAL FRAKTUR CAPITAL N
|
||||
'O': '\U0001d512', # 𝔒 MATHEMATICAL FRAKTUR CAPITAL O
|
||||
'P': '\U0001d513', # 𝔓 MATHEMATICAL FRAKTUR CAPITAL P
|
||||
'Q': '\U0001d514', # 𝔔 MATHEMATICAL FRAKTUR CAPITAL Q
|
||||
'R': '\u211c', # ℜ BLACK-LETTER CAPITAL R
|
||||
'S': '\U0001d516', # 𝔖 MATHEMATICAL FRAKTUR CAPITAL S
|
||||
'T': '\U0001d517', # 𝔗 MATHEMATICAL FRAKTUR CAPITAL T
|
||||
'U': '\U0001d518', # 𝔘 MATHEMATICAL FRAKTUR CAPITAL U
|
||||
'V': '\U0001d519', # 𝔙 MATHEMATICAL FRAKTUR CAPITAL V
|
||||
'W': '\U0001d51a', # 𝔚 MATHEMATICAL FRAKTUR CAPITAL W
|
||||
'X': '\U0001d51b', # 𝔛 MATHEMATICAL FRAKTUR CAPITAL X
|
||||
'Y': '\U0001d51c', # 𝔜 MATHEMATICAL FRAKTUR CAPITAL Y
|
||||
'Z': '\u2128', # ℨ BLACK-LETTER CAPITAL Z
|
||||
'a': '\U0001d51e', # 𝔞 MATHEMATICAL FRAKTUR SMALL A
|
||||
'b': '\U0001d51f', # 𝔟 MATHEMATICAL FRAKTUR SMALL B
|
||||
'c': '\U0001d520', # 𝔠 MATHEMATICAL FRAKTUR SMALL C
|
||||
'd': '\U0001d521', # 𝔡 MATHEMATICAL FRAKTUR SMALL D
|
||||
'e': '\U0001d522', # 𝔢 MATHEMATICAL FRAKTUR SMALL E
|
||||
'f': '\U0001d523', # 𝔣 MATHEMATICAL FRAKTUR SMALL F
|
||||
'g': '\U0001d524', # 𝔤 MATHEMATICAL FRAKTUR SMALL G
|
||||
'h': '\U0001d525', # 𝔥 MATHEMATICAL FRAKTUR SMALL H
|
||||
'i': '\U0001d526', # 𝔦 MATHEMATICAL FRAKTUR SMALL I
|
||||
'j': '\U0001d527', # 𝔧 MATHEMATICAL FRAKTUR SMALL J
|
||||
'k': '\U0001d528', # 𝔨 MATHEMATICAL FRAKTUR SMALL K
|
||||
'l': '\U0001d529', # 𝔩 MATHEMATICAL FRAKTUR SMALL L
|
||||
'm': '\U0001d52a', # 𝔪 MATHEMATICAL FRAKTUR SMALL M
|
||||
'n': '\U0001d52b', # 𝔫 MATHEMATICAL FRAKTUR SMALL N
|
||||
'o': '\U0001d52c', # 𝔬 MATHEMATICAL FRAKTUR SMALL O
|
||||
'p': '\U0001d52d', # 𝔭 MATHEMATICAL FRAKTUR SMALL P
|
||||
'q': '\U0001d52e', # 𝔮 MATHEMATICAL FRAKTUR SMALL Q
|
||||
'r': '\U0001d52f', # 𝔯 MATHEMATICAL FRAKTUR SMALL R
|
||||
's': '\U0001d530', # 𝔰 MATHEMATICAL FRAKTUR SMALL S
|
||||
't': '\U0001d531', # 𝔱 MATHEMATICAL FRAKTUR SMALL T
|
||||
'u': '\U0001d532', # 𝔲 MATHEMATICAL FRAKTUR SMALL U
|
||||
'v': '\U0001d533', # 𝔳 MATHEMATICAL FRAKTUR SMALL V
|
||||
'w': '\U0001d534', # 𝔴 MATHEMATICAL FRAKTUR SMALL W
|
||||
'x': '\U0001d535', # 𝔵 MATHEMATICAL FRAKTUR SMALL X
|
||||
'y': '\U0001d536', # 𝔶 MATHEMATICAL FRAKTUR SMALL Y
|
||||
'z': '\U0001d537', # 𝔷 MATHEMATICAL FRAKTUR SMALL Z
|
||||
}
|
||||
|
||||
mathit = {
|
||||
'A': '\U0001d434', # 𝐴 MATHEMATICAL ITALIC CAPITAL A
|
||||
'B': '\U0001d435', # 𝐵 MATHEMATICAL ITALIC CAPITAL B
|
||||
'C': '\U0001d436', # 𝐶 MATHEMATICAL ITALIC CAPITAL C
|
||||
'D': '\U0001d437', # 𝐷 MATHEMATICAL ITALIC CAPITAL D
|
||||
'E': '\U0001d438', # 𝐸 MATHEMATICAL ITALIC CAPITAL E
|
||||
'F': '\U0001d439', # 𝐹 MATHEMATICAL ITALIC CAPITAL F
|
||||
'G': '\U0001d43a', # 𝐺 MATHEMATICAL ITALIC CAPITAL G
|
||||
'H': '\U0001d43b', # 𝐻 MATHEMATICAL ITALIC CAPITAL H
|
||||
'I': '\U0001d43c', # 𝐼 MATHEMATICAL ITALIC CAPITAL I
|
||||
'J': '\U0001d43d', # 𝐽 MATHEMATICAL ITALIC CAPITAL J
|
||||
'K': '\U0001d43e', # 𝐾 MATHEMATICAL ITALIC CAPITAL K
|
||||
'L': '\U0001d43f', # 𝐿 MATHEMATICAL ITALIC CAPITAL L
|
||||
'M': '\U0001d440', # 𝑀 MATHEMATICAL ITALIC CAPITAL M
|
||||
'N': '\U0001d441', # 𝑁 MATHEMATICAL ITALIC CAPITAL N
|
||||
'O': '\U0001d442', # 𝑂 MATHEMATICAL ITALIC CAPITAL O
|
||||
'P': '\U0001d443', # 𝑃 MATHEMATICAL ITALIC CAPITAL P
|
||||
'Q': '\U0001d444', # 𝑄 MATHEMATICAL ITALIC CAPITAL Q
|
||||
'R': '\U0001d445', # 𝑅 MATHEMATICAL ITALIC CAPITAL R
|
||||
'S': '\U0001d446', # 𝑆 MATHEMATICAL ITALIC CAPITAL S
|
||||
'T': '\U0001d447', # 𝑇 MATHEMATICAL ITALIC CAPITAL T
|
||||
'U': '\U0001d448', # 𝑈 MATHEMATICAL ITALIC CAPITAL U
|
||||
'V': '\U0001d449', # 𝑉 MATHEMATICAL ITALIC CAPITAL V
|
||||
'W': '\U0001d44a', # 𝑊 MATHEMATICAL ITALIC CAPITAL W
|
||||
'X': '\U0001d44b', # 𝑋 MATHEMATICAL ITALIC CAPITAL X
|
||||
'Y': '\U0001d44c', # 𝑌 MATHEMATICAL ITALIC CAPITAL Y
|
||||
'Z': '\U0001d44d', # 𝑍 MATHEMATICAL ITALIC CAPITAL Z
|
||||
'a': '\U0001d44e', # 𝑎 MATHEMATICAL ITALIC SMALL A
|
||||
'b': '\U0001d44f', # 𝑏 MATHEMATICAL ITALIC SMALL B
|
||||
'c': '\U0001d450', # 𝑐 MATHEMATICAL ITALIC SMALL C
|
||||
'd': '\U0001d451', # 𝑑 MATHEMATICAL ITALIC SMALL D
|
||||
'e': '\U0001d452', # 𝑒 MATHEMATICAL ITALIC SMALL E
|
||||
'f': '\U0001d453', # 𝑓 MATHEMATICAL ITALIC SMALL F
|
||||
'g': '\U0001d454', # 𝑔 MATHEMATICAL ITALIC SMALL G
|
||||
'h': '\u210e', # ℎ PLANCK CONSTANT
|
||||
'i': '\U0001d456', # 𝑖 MATHEMATICAL ITALIC SMALL I
|
||||
'j': '\U0001d457', # 𝑗 MATHEMATICAL ITALIC SMALL J
|
||||
'k': '\U0001d458', # 𝑘 MATHEMATICAL ITALIC SMALL K
|
||||
'l': '\U0001d459', # 𝑙 MATHEMATICAL ITALIC SMALL L
|
||||
'm': '\U0001d45a', # 𝑚 MATHEMATICAL ITALIC SMALL M
|
||||
'n': '\U0001d45b', # 𝑛 MATHEMATICAL ITALIC SMALL N
|
||||
'o': '\U0001d45c', # 𝑜 MATHEMATICAL ITALIC SMALL O
|
||||
'p': '\U0001d45d', # 𝑝 MATHEMATICAL ITALIC SMALL P
|
||||
'q': '\U0001d45e', # 𝑞 MATHEMATICAL ITALIC SMALL Q
|
||||
'r': '\U0001d45f', # 𝑟 MATHEMATICAL ITALIC SMALL R
|
||||
's': '\U0001d460', # 𝑠 MATHEMATICAL ITALIC SMALL S
|
||||
't': '\U0001d461', # 𝑡 MATHEMATICAL ITALIC SMALL T
|
||||
'u': '\U0001d462', # 𝑢 MATHEMATICAL ITALIC SMALL U
|
||||
'v': '\U0001d463', # 𝑣 MATHEMATICAL ITALIC SMALL V
|
||||
'w': '\U0001d464', # 𝑤 MATHEMATICAL ITALIC SMALL W
|
||||
'x': '\U0001d465', # 𝑥 MATHEMATICAL ITALIC SMALL X
|
||||
'y': '\U0001d466', # 𝑦 MATHEMATICAL ITALIC SMALL Y
|
||||
'z': '\U0001d467', # 𝑧 MATHEMATICAL ITALIC SMALL Z
|
||||
'ı': '\U0001d6a4', # 𝚤 MATHEMATICAL ITALIC SMALL DOTLESS I
|
||||
'ȷ': '\U0001d6a5', # 𝚥 MATHEMATICAL ITALIC SMALL DOTLESS J
|
||||
'Γ': '\U0001d6e4', # 𝛤 MATHEMATICAL ITALIC CAPITAL GAMMA
|
||||
'Δ': '\U0001d6e5', # 𝛥 MATHEMATICAL ITALIC CAPITAL DELTA
|
||||
'Θ': '\U0001d6e9', # 𝛩 MATHEMATICAL ITALIC CAPITAL THETA
|
||||
'Λ': '\U0001d6ec', # 𝛬 MATHEMATICAL ITALIC CAPITAL LAMDA
|
||||
'Ξ': '\U0001d6ef', # 𝛯 MATHEMATICAL ITALIC CAPITAL XI
|
||||
'Π': '\U0001d6f1', # 𝛱 MATHEMATICAL ITALIC CAPITAL PI
|
||||
'Σ': '\U0001d6f4', # 𝛴 MATHEMATICAL ITALIC CAPITAL SIGMA
|
||||
'Υ': '\U0001d6f6', # 𝛶 MATHEMATICAL ITALIC CAPITAL UPSILON
|
||||
'Φ': '\U0001d6f7', # 𝛷 MATHEMATICAL ITALIC CAPITAL PHI
|
||||
'Ψ': '\U0001d6f9', # 𝛹 MATHEMATICAL ITALIC CAPITAL PSI
|
||||
'Ω': '\U0001d6fa', # 𝛺 MATHEMATICAL ITALIC CAPITAL OMEGA
|
||||
'α': '\U0001d6fc', # 𝛼 MATHEMATICAL ITALIC SMALL ALPHA
|
||||
'β': '\U0001d6fd', # 𝛽 MATHEMATICAL ITALIC SMALL BETA
|
||||
'γ': '\U0001d6fe', # 𝛾 MATHEMATICAL ITALIC SMALL GAMMA
|
||||
'δ': '\U0001d6ff', # 𝛿 MATHEMATICAL ITALIC SMALL DELTA
|
||||
'ε': '\U0001d700', # 𝜀 MATHEMATICAL ITALIC SMALL EPSILON
|
||||
'ζ': '\U0001d701', # 𝜁 MATHEMATICAL ITALIC SMALL ZETA
|
||||
'η': '\U0001d702', # 𝜂 MATHEMATICAL ITALIC SMALL ETA
|
||||
'θ': '\U0001d703', # 𝜃 MATHEMATICAL ITALIC SMALL THETA
|
||||
'ι': '\U0001d704', # 𝜄 MATHEMATICAL ITALIC SMALL IOTA
|
||||
'κ': '\U0001d705', # 𝜅 MATHEMATICAL ITALIC SMALL KAPPA
|
||||
'λ': '\U0001d706', # 𝜆 MATHEMATICAL ITALIC SMALL LAMDA
|
||||
'μ': '\U0001d707', # 𝜇 MATHEMATICAL ITALIC SMALL MU
|
||||
'ν': '\U0001d708', # 𝜈 MATHEMATICAL ITALIC SMALL NU
|
||||
'ξ': '\U0001d709', # 𝜉 MATHEMATICAL ITALIC SMALL XI
|
||||
'π': '\U0001d70b', # 𝜋 MATHEMATICAL ITALIC SMALL PI
|
||||
'ρ': '\U0001d70c', # 𝜌 MATHEMATICAL ITALIC SMALL RHO
|
||||
'ς': '\U0001d70d', # 𝜍 MATHEMATICAL ITALIC SMALL FINAL SIGMA
|
||||
'σ': '\U0001d70e', # 𝜎 MATHEMATICAL ITALIC SMALL SIGMA
|
||||
'τ': '\U0001d70f', # 𝜏 MATHEMATICAL ITALIC SMALL TAU
|
||||
'υ': '\U0001d710', # 𝜐 MATHEMATICAL ITALIC SMALL UPSILON
|
||||
'φ': '\U0001d711', # 𝜑 MATHEMATICAL ITALIC SMALL PHI
|
||||
'χ': '\U0001d712', # 𝜒 MATHEMATICAL ITALIC SMALL CHI
|
||||
'ψ': '\U0001d713', # 𝜓 MATHEMATICAL ITALIC SMALL PSI
|
||||
'ω': '\U0001d714', # 𝜔 MATHEMATICAL ITALIC SMALL OMEGA
|
||||
'ϑ': '\U0001d717', # 𝜗 MATHEMATICAL ITALIC THETA SYMBOL
|
||||
'ϕ': '\U0001d719', # 𝜙 MATHEMATICAL ITALIC PHI SYMBOL
|
||||
'ϖ': '\U0001d71b', # 𝜛 MATHEMATICAL ITALIC PI SYMBOL
|
||||
'ϱ': '\U0001d71a', # 𝜚 MATHEMATICAL ITALIC RHO SYMBOL
|
||||
'ϵ': '\U0001d716', # 𝜖 MATHEMATICAL ITALIC EPSILON SYMBOL
|
||||
'∂': '\U0001d715', # 𝜕 MATHEMATICAL ITALIC PARTIAL DIFFERENTIAL
|
||||
'∇': '\U0001d6fb', # 𝛻 MATHEMATICAL ITALIC NABLA
|
||||
}
|
||||
|
||||
mathsf = {
|
||||
'0': '\U0001d7e2', # 𝟢 MATHEMATICAL SANS-SERIF DIGIT ZERO
|
||||
'1': '\U0001d7e3', # 𝟣 MATHEMATICAL SANS-SERIF DIGIT ONE
|
||||
'2': '\U0001d7e4', # 𝟤 MATHEMATICAL SANS-SERIF DIGIT TWO
|
||||
'3': '\U0001d7e5', # 𝟥 MATHEMATICAL SANS-SERIF DIGIT THREE
|
||||
'4': '\U0001d7e6', # 𝟦 MATHEMATICAL SANS-SERIF DIGIT FOUR
|
||||
'5': '\U0001d7e7', # 𝟧 MATHEMATICAL SANS-SERIF DIGIT FIVE
|
||||
'6': '\U0001d7e8', # 𝟨 MATHEMATICAL SANS-SERIF DIGIT SIX
|
||||
'7': '\U0001d7e9', # 𝟩 MATHEMATICAL SANS-SERIF DIGIT SEVEN
|
||||
'8': '\U0001d7ea', # 𝟪 MATHEMATICAL SANS-SERIF DIGIT EIGHT
|
||||
'9': '\U0001d7eb', # 𝟫 MATHEMATICAL SANS-SERIF DIGIT NINE
|
||||
'A': '\U0001d5a0', # 𝖠 MATHEMATICAL SANS-SERIF CAPITAL A
|
||||
'B': '\U0001d5a1', # 𝖡 MATHEMATICAL SANS-SERIF CAPITAL B
|
||||
'C': '\U0001d5a2', # 𝖢 MATHEMATICAL SANS-SERIF CAPITAL C
|
||||
'D': '\U0001d5a3', # 𝖣 MATHEMATICAL SANS-SERIF CAPITAL D
|
||||
'E': '\U0001d5a4', # 𝖤 MATHEMATICAL SANS-SERIF CAPITAL E
|
||||
'F': '\U0001d5a5', # 𝖥 MATHEMATICAL SANS-SERIF CAPITAL F
|
||||
'G': '\U0001d5a6', # 𝖦 MATHEMATICAL SANS-SERIF CAPITAL G
|
||||
'H': '\U0001d5a7', # 𝖧 MATHEMATICAL SANS-SERIF CAPITAL H
|
||||
'I': '\U0001d5a8', # 𝖨 MATHEMATICAL SANS-SERIF CAPITAL I
|
||||
'J': '\U0001d5a9', # 𝖩 MATHEMATICAL SANS-SERIF CAPITAL J
|
||||
'K': '\U0001d5aa', # 𝖪 MATHEMATICAL SANS-SERIF CAPITAL K
|
||||
'L': '\U0001d5ab', # 𝖫 MATHEMATICAL SANS-SERIF CAPITAL L
|
||||
'M': '\U0001d5ac', # 𝖬 MATHEMATICAL SANS-SERIF CAPITAL M
|
||||
'N': '\U0001d5ad', # 𝖭 MATHEMATICAL SANS-SERIF CAPITAL N
|
||||
'O': '\U0001d5ae', # 𝖮 MATHEMATICAL SANS-SERIF CAPITAL O
|
||||
'P': '\U0001d5af', # 𝖯 MATHEMATICAL SANS-SERIF CAPITAL P
|
||||
'Q': '\U0001d5b0', # 𝖰 MATHEMATICAL SANS-SERIF CAPITAL Q
|
||||
'R': '\U0001d5b1', # 𝖱 MATHEMATICAL SANS-SERIF CAPITAL R
|
||||
'S': '\U0001d5b2', # 𝖲 MATHEMATICAL SANS-SERIF CAPITAL S
|
||||
'T': '\U0001d5b3', # 𝖳 MATHEMATICAL SANS-SERIF CAPITAL T
|
||||
'U': '\U0001d5b4', # 𝖴 MATHEMATICAL SANS-SERIF CAPITAL U
|
||||
'V': '\U0001d5b5', # 𝖵 MATHEMATICAL SANS-SERIF CAPITAL V
|
||||
'W': '\U0001d5b6', # 𝖶 MATHEMATICAL SANS-SERIF CAPITAL W
|
||||
'X': '\U0001d5b7', # 𝖷 MATHEMATICAL SANS-SERIF CAPITAL X
|
||||
'Y': '\U0001d5b8', # 𝖸 MATHEMATICAL SANS-SERIF CAPITAL Y
|
||||
'Z': '\U0001d5b9', # 𝖹 MATHEMATICAL SANS-SERIF CAPITAL Z
|
||||
'a': '\U0001d5ba', # 𝖺 MATHEMATICAL SANS-SERIF SMALL A
|
||||
'b': '\U0001d5bb', # 𝖻 MATHEMATICAL SANS-SERIF SMALL B
|
||||
'c': '\U0001d5bc', # 𝖼 MATHEMATICAL SANS-SERIF SMALL C
|
||||
'd': '\U0001d5bd', # 𝖽 MATHEMATICAL SANS-SERIF SMALL D
|
||||
'e': '\U0001d5be', # 𝖾 MATHEMATICAL SANS-SERIF SMALL E
|
||||
'f': '\U0001d5bf', # 𝖿 MATHEMATICAL SANS-SERIF SMALL F
|
||||
'g': '\U0001d5c0', # 𝗀 MATHEMATICAL SANS-SERIF SMALL G
|
||||
'h': '\U0001d5c1', # 𝗁 MATHEMATICAL SANS-SERIF SMALL H
|
||||
'i': '\U0001d5c2', # 𝗂 MATHEMATICAL SANS-SERIF SMALL I
|
||||
'j': '\U0001d5c3', # 𝗃 MATHEMATICAL SANS-SERIF SMALL J
|
||||
'k': '\U0001d5c4', # 𝗄 MATHEMATICAL SANS-SERIF SMALL K
|
||||
'l': '\U0001d5c5', # 𝗅 MATHEMATICAL SANS-SERIF SMALL L
|
||||
'm': '\U0001d5c6', # 𝗆 MATHEMATICAL SANS-SERIF SMALL M
|
||||
'n': '\U0001d5c7', # 𝗇 MATHEMATICAL SANS-SERIF SMALL N
|
||||
'o': '\U0001d5c8', # 𝗈 MATHEMATICAL SANS-SERIF SMALL O
|
||||
'p': '\U0001d5c9', # 𝗉 MATHEMATICAL SANS-SERIF SMALL P
|
||||
'q': '\U0001d5ca', # 𝗊 MATHEMATICAL SANS-SERIF SMALL Q
|
||||
'r': '\U0001d5cb', # 𝗋 MATHEMATICAL SANS-SERIF SMALL R
|
||||
's': '\U0001d5cc', # 𝗌 MATHEMATICAL SANS-SERIF SMALL S
|
||||
't': '\U0001d5cd', # 𝗍 MATHEMATICAL SANS-SERIF SMALL T
|
||||
'u': '\U0001d5ce', # 𝗎 MATHEMATICAL SANS-SERIF SMALL U
|
||||
'v': '\U0001d5cf', # 𝗏 MATHEMATICAL SANS-SERIF SMALL V
|
||||
'w': '\U0001d5d0', # 𝗐 MATHEMATICAL SANS-SERIF SMALL W
|
||||
'x': '\U0001d5d1', # 𝗑 MATHEMATICAL SANS-SERIF SMALL X
|
||||
'y': '\U0001d5d2', # 𝗒 MATHEMATICAL SANS-SERIF SMALL Y
|
||||
'z': '\U0001d5d3', # 𝗓 MATHEMATICAL SANS-SERIF SMALL Z
|
||||
}
|
||||
|
||||
mathsfbf = {
|
||||
'0': '\U0001d7ec', # 𝟬 MATHEMATICAL SANS-SERIF BOLD DIGIT ZERO
|
||||
'1': '\U0001d7ed', # 𝟭 MATHEMATICAL SANS-SERIF BOLD DIGIT ONE
|
||||
'2': '\U0001d7ee', # 𝟮 MATHEMATICAL SANS-SERIF BOLD DIGIT TWO
|
||||
'3': '\U0001d7ef', # 𝟯 MATHEMATICAL SANS-SERIF BOLD DIGIT THREE
|
||||
'4': '\U0001d7f0', # 𝟰 MATHEMATICAL SANS-SERIF BOLD DIGIT FOUR
|
||||
'5': '\U0001d7f1', # 𝟱 MATHEMATICAL SANS-SERIF BOLD DIGIT FIVE
|
||||
'6': '\U0001d7f2', # 𝟲 MATHEMATICAL SANS-SERIF BOLD DIGIT SIX
|
||||
'7': '\U0001d7f3', # 𝟳 MATHEMATICAL SANS-SERIF BOLD DIGIT SEVEN
|
||||
'8': '\U0001d7f4', # 𝟴 MATHEMATICAL SANS-SERIF BOLD DIGIT EIGHT
|
||||
'9': '\U0001d7f5', # 𝟵 MATHEMATICAL SANS-SERIF BOLD DIGIT NINE
|
||||
'A': '\U0001d5d4', # 𝗔 MATHEMATICAL SANS-SERIF BOLD CAPITAL A
|
||||
'B': '\U0001d5d5', # 𝗕 MATHEMATICAL SANS-SERIF BOLD CAPITAL B
|
||||
'C': '\U0001d5d6', # 𝗖 MATHEMATICAL SANS-SERIF BOLD CAPITAL C
|
||||
'D': '\U0001d5d7', # 𝗗 MATHEMATICAL SANS-SERIF BOLD CAPITAL D
|
||||
'E': '\U0001d5d8', # 𝗘 MATHEMATICAL SANS-SERIF BOLD CAPITAL E
|
||||
'F': '\U0001d5d9', # 𝗙 MATHEMATICAL SANS-SERIF BOLD CAPITAL F
|
||||
'G': '\U0001d5da', # 𝗚 MATHEMATICAL SANS-SERIF BOLD CAPITAL G
|
||||
'H': '\U0001d5db', # 𝗛 MATHEMATICAL SANS-SERIF BOLD CAPITAL H
|
||||
'I': '\U0001d5dc', # 𝗜 MATHEMATICAL SANS-SERIF BOLD CAPITAL I
|
||||
'J': '\U0001d5dd', # 𝗝 MATHEMATICAL SANS-SERIF BOLD CAPITAL J
|
||||
'K': '\U0001d5de', # 𝗞 MATHEMATICAL SANS-SERIF BOLD CAPITAL K
|
||||
'L': '\U0001d5df', # 𝗟 MATHEMATICAL SANS-SERIF BOLD CAPITAL L
|
||||
'M': '\U0001d5e0', # 𝗠 MATHEMATICAL SANS-SERIF BOLD CAPITAL M
|
||||
'N': '\U0001d5e1', # 𝗡 MATHEMATICAL SANS-SERIF BOLD CAPITAL N
|
||||
'O': '\U0001d5e2', # 𝗢 MATHEMATICAL SANS-SERIF BOLD CAPITAL O
|
||||
'P': '\U0001d5e3', # 𝗣 MATHEMATICAL SANS-SERIF BOLD CAPITAL P
|
||||
'Q': '\U0001d5e4', # 𝗤 MATHEMATICAL SANS-SERIF BOLD CAPITAL Q
|
||||
'R': '\U0001d5e5', # 𝗥 MATHEMATICAL SANS-SERIF BOLD CAPITAL R
|
||||
'S': '\U0001d5e6', # 𝗦 MATHEMATICAL SANS-SERIF BOLD CAPITAL S
|
||||
'T': '\U0001d5e7', # 𝗧 MATHEMATICAL SANS-SERIF BOLD CAPITAL T
|
||||
'U': '\U0001d5e8', # 𝗨 MATHEMATICAL SANS-SERIF BOLD CAPITAL U
|
||||
'V': '\U0001d5e9', # 𝗩 MATHEMATICAL SANS-SERIF BOLD CAPITAL V
|
||||
'W': '\U0001d5ea', # 𝗪 MATHEMATICAL SANS-SERIF BOLD CAPITAL W
|
||||
'X': '\U0001d5eb', # 𝗫 MATHEMATICAL SANS-SERIF BOLD CAPITAL X
|
||||
'Y': '\U0001d5ec', # 𝗬 MATHEMATICAL SANS-SERIF BOLD CAPITAL Y
|
||||
'Z': '\U0001d5ed', # 𝗭 MATHEMATICAL SANS-SERIF BOLD CAPITAL Z
|
||||
'a': '\U0001d5ee', # 𝗮 MATHEMATICAL SANS-SERIF BOLD SMALL A
|
||||
'b': '\U0001d5ef', # 𝗯 MATHEMATICAL SANS-SERIF BOLD SMALL B
|
||||
'c': '\U0001d5f0', # 𝗰 MATHEMATICAL SANS-SERIF BOLD SMALL C
|
||||
'd': '\U0001d5f1', # 𝗱 MATHEMATICAL SANS-SERIF BOLD SMALL D
|
||||
'e': '\U0001d5f2', # 𝗲 MATHEMATICAL SANS-SERIF BOLD SMALL E
|
||||
'f': '\U0001d5f3', # 𝗳 MATHEMATICAL SANS-SERIF BOLD SMALL F
|
||||
'g': '\U0001d5f4', # 𝗴 MATHEMATICAL SANS-SERIF BOLD SMALL G
|
||||
'h': '\U0001d5f5', # 𝗵 MATHEMATICAL SANS-SERIF BOLD SMALL H
|
||||
'i': '\U0001d5f6', # 𝗶 MATHEMATICAL SANS-SERIF BOLD SMALL I
|
||||
'j': '\U0001d5f7', # 𝗷 MATHEMATICAL SANS-SERIF BOLD SMALL J
|
||||
'k': '\U0001d5f8', # 𝗸 MATHEMATICAL SANS-SERIF BOLD SMALL K
|
||||
'l': '\U0001d5f9', # 𝗹 MATHEMATICAL SANS-SERIF BOLD SMALL L
|
||||
'm': '\U0001d5fa', # 𝗺 MATHEMATICAL SANS-SERIF BOLD SMALL M
|
||||
'n': '\U0001d5fb', # 𝗻 MATHEMATICAL SANS-SERIF BOLD SMALL N
|
||||
'o': '\U0001d5fc', # 𝗼 MATHEMATICAL SANS-SERIF BOLD SMALL O
|
||||
'p': '\U0001d5fd', # 𝗽 MATHEMATICAL SANS-SERIF BOLD SMALL P
|
||||
'q': '\U0001d5fe', # 𝗾 MATHEMATICAL SANS-SERIF BOLD SMALL Q
|
||||
'r': '\U0001d5ff', # 𝗿 MATHEMATICAL SANS-SERIF BOLD SMALL R
|
||||
's': '\U0001d600', # 𝘀 MATHEMATICAL SANS-SERIF BOLD SMALL S
|
||||
't': '\U0001d601', # 𝘁 MATHEMATICAL SANS-SERIF BOLD SMALL T
|
||||
'u': '\U0001d602', # 𝘂 MATHEMATICAL SANS-SERIF BOLD SMALL U
|
||||
'v': '\U0001d603', # 𝘃 MATHEMATICAL SANS-SERIF BOLD SMALL V
|
||||
'w': '\U0001d604', # 𝘄 MATHEMATICAL SANS-SERIF BOLD SMALL W
|
||||
'x': '\U0001d605', # 𝘅 MATHEMATICAL SANS-SERIF BOLD SMALL X
|
||||
'y': '\U0001d606', # 𝘆 MATHEMATICAL SANS-SERIF BOLD SMALL Y
|
||||
'z': '\U0001d607', # 𝘇 MATHEMATICAL SANS-SERIF BOLD SMALL Z
|
||||
'Γ': '\U0001d758', # 𝝘 MATHEMATICAL SANS-SERIF BOLD CAPITAL GAMMA
|
||||
'Δ': '\U0001d759', # 𝝙 MATHEMATICAL SANS-SERIF BOLD CAPITAL DELTA
|
||||
'Θ': '\U0001d75d', # 𝝝 MATHEMATICAL SANS-SERIF BOLD CAPITAL THETA
|
||||
'Λ': '\U0001d760', # 𝝠 MATHEMATICAL SANS-SERIF BOLD CAPITAL LAMDA
|
||||
'Ξ': '\U0001d763', # 𝝣 MATHEMATICAL SANS-SERIF BOLD CAPITAL XI
|
||||
'Π': '\U0001d765', # 𝝥 MATHEMATICAL SANS-SERIF BOLD CAPITAL PI
|
||||
'Σ': '\U0001d768', # 𝝨 MATHEMATICAL SANS-SERIF BOLD CAPITAL SIGMA
|
||||
'Υ': '\U0001d76a', # 𝝪 MATHEMATICAL SANS-SERIF BOLD CAPITAL UPSILON
|
||||
'Φ': '\U0001d76b', # 𝝫 MATHEMATICAL SANS-SERIF BOLD CAPITAL PHI
|
||||
'Ψ': '\U0001d76d', # 𝝭 MATHEMATICAL SANS-SERIF BOLD CAPITAL PSI
|
||||
'Ω': '\U0001d76e', # 𝝮 MATHEMATICAL SANS-SERIF BOLD CAPITAL OMEGA
|
||||
'α': '\U0001d770', # 𝝰 MATHEMATICAL SANS-SERIF BOLD SMALL ALPHA
|
||||
'β': '\U0001d771', # 𝝱 MATHEMATICAL SANS-SERIF BOLD SMALL BETA
|
||||
'γ': '\U0001d772', # 𝝲 MATHEMATICAL SANS-SERIF BOLD SMALL GAMMA
|
||||
'δ': '\U0001d773', # 𝝳 MATHEMATICAL SANS-SERIF BOLD SMALL DELTA
|
||||
'ε': '\U0001d774', # 𝝴 MATHEMATICAL SANS-SERIF BOLD SMALL EPSILON
|
||||
'ζ': '\U0001d775', # 𝝵 MATHEMATICAL SANS-SERIF BOLD SMALL ZETA
|
||||
'η': '\U0001d776', # 𝝶 MATHEMATICAL SANS-SERIF BOLD SMALL ETA
|
||||
'θ': '\U0001d777', # 𝝷 MATHEMATICAL SANS-SERIF BOLD SMALL THETA
|
||||
'ι': '\U0001d778', # 𝝸 MATHEMATICAL SANS-SERIF BOLD SMALL IOTA
|
||||
'κ': '\U0001d779', # 𝝹 MATHEMATICAL SANS-SERIF BOLD SMALL KAPPA
|
||||
'λ': '\U0001d77a', # 𝝺 MATHEMATICAL SANS-SERIF BOLD SMALL LAMDA
|
||||
'μ': '\U0001d77b', # 𝝻 MATHEMATICAL SANS-SERIF BOLD SMALL MU
|
||||
'ν': '\U0001d77c', # 𝝼 MATHEMATICAL SANS-SERIF BOLD SMALL NU
|
||||
'ξ': '\U0001d77d', # 𝝽 MATHEMATICAL SANS-SERIF BOLD SMALL XI
|
||||
'π': '\U0001d77f', # 𝝿 MATHEMATICAL SANS-SERIF BOLD SMALL PI
|
||||
'ρ': '\U0001d780', # 𝞀 MATHEMATICAL SANS-SERIF BOLD SMALL RHO
|
||||
'ς': '\U0001d781', # 𝞁 MATHEMATICAL SANS-SERIF BOLD SMALL FINAL SIGMA
|
||||
'σ': '\U0001d782', # 𝞂 MATHEMATICAL SANS-SERIF BOLD SMALL SIGMA
|
||||
'τ': '\U0001d783', # 𝞃 MATHEMATICAL SANS-SERIF BOLD SMALL TAU
|
||||
'υ': '\U0001d784', # 𝞄 MATHEMATICAL SANS-SERIF BOLD SMALL UPSILON
|
||||
'φ': '\U0001d785', # 𝞅 MATHEMATICAL SANS-SERIF BOLD SMALL PHI
|
||||
'χ': '\U0001d786', # 𝞆 MATHEMATICAL SANS-SERIF BOLD SMALL CHI
|
||||
'ψ': '\U0001d787', # 𝞇 MATHEMATICAL SANS-SERIF BOLD SMALL PSI
|
||||
'ω': '\U0001d788', # 𝞈 MATHEMATICAL SANS-SERIF BOLD SMALL OMEGA
|
||||
'ϑ': '\U0001d78b', # 𝞋 MATHEMATICAL SANS-SERIF BOLD THETA SYMBOL
|
||||
'ϕ': '\U0001d78d', # 𝞍 MATHEMATICAL SANS-SERIF BOLD PHI SYMBOL
|
||||
'ϖ': '\U0001d78f', # 𝞏 MATHEMATICAL SANS-SERIF BOLD PI SYMBOL
|
||||
'ϱ': '\U0001d78e', # 𝞎 MATHEMATICAL SANS-SERIF BOLD RHO SYMBOL
|
||||
'ϵ': '\U0001d78a', # 𝞊 MATHEMATICAL SANS-SERIF BOLD EPSILON SYMBOL
|
||||
'∇': '\U0001d76f', # 𝝯 MATHEMATICAL SANS-SERIF BOLD NABLA
|
||||
}
|
||||
|
||||
mathsfbfit = {
|
||||
'A': '\U0001d63c', # 𝘼 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL A
|
||||
'B': '\U0001d63d', # 𝘽 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL B
|
||||
'C': '\U0001d63e', # 𝘾 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL C
|
||||
'D': '\U0001d63f', # 𝘿 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL D
|
||||
'E': '\U0001d640', # 𝙀 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL E
|
||||
'F': '\U0001d641', # 𝙁 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL F
|
||||
'G': '\U0001d642', # 𝙂 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL G
|
||||
'H': '\U0001d643', # 𝙃 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL H
|
||||
'I': '\U0001d644', # 𝙄 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL I
|
||||
'J': '\U0001d645', # 𝙅 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL J
|
||||
'K': '\U0001d646', # 𝙆 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL K
|
||||
'L': '\U0001d647', # 𝙇 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL L
|
||||
'M': '\U0001d648', # 𝙈 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL M
|
||||
'N': '\U0001d649', # 𝙉 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL N
|
||||
'O': '\U0001d64a', # 𝙊 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL O
|
||||
'P': '\U0001d64b', # 𝙋 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL P
|
||||
'Q': '\U0001d64c', # 𝙌 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL Q
|
||||
'R': '\U0001d64d', # 𝙍 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL R
|
||||
'S': '\U0001d64e', # 𝙎 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL S
|
||||
'T': '\U0001d64f', # 𝙏 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL T
|
||||
'U': '\U0001d650', # 𝙐 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL U
|
||||
'V': '\U0001d651', # 𝙑 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL V
|
||||
'W': '\U0001d652', # 𝙒 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL W
|
||||
'X': '\U0001d653', # 𝙓 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL X
|
||||
'Y': '\U0001d654', # 𝙔 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL Y
|
||||
'Z': '\U0001d655', # 𝙕 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL Z
|
||||
'a': '\U0001d656', # 𝙖 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL A
|
||||
'b': '\U0001d657', # 𝙗 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL B
|
||||
'c': '\U0001d658', # 𝙘 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL C
|
||||
'd': '\U0001d659', # 𝙙 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL D
|
||||
'e': '\U0001d65a', # 𝙚 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL E
|
||||
'f': '\U0001d65b', # 𝙛 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL F
|
||||
'g': '\U0001d65c', # 𝙜 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL G
|
||||
'h': '\U0001d65d', # 𝙝 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL H
|
||||
'i': '\U0001d65e', # 𝙞 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL I
|
||||
'j': '\U0001d65f', # 𝙟 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL J
|
||||
'k': '\U0001d660', # 𝙠 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL K
|
||||
'l': '\U0001d661', # 𝙡 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL L
|
||||
'm': '\U0001d662', # 𝙢 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL M
|
||||
'n': '\U0001d663', # 𝙣 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL N
|
||||
'o': '\U0001d664', # 𝙤 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL O
|
||||
'p': '\U0001d665', # 𝙥 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL P
|
||||
'q': '\U0001d666', # 𝙦 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL Q
|
||||
'r': '\U0001d667', # 𝙧 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL R
|
||||
's': '\U0001d668', # 𝙨 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL S
|
||||
't': '\U0001d669', # 𝙩 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL T
|
||||
'u': '\U0001d66a', # 𝙪 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL U
|
||||
'v': '\U0001d66b', # 𝙫 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL V
|
||||
'w': '\U0001d66c', # 𝙬 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL W
|
||||
'x': '\U0001d66d', # 𝙭 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL X
|
||||
'y': '\U0001d66e', # 𝙮 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL Y
|
||||
'z': '\U0001d66f', # 𝙯 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL Z
|
||||
'Γ': '\U0001d792', # 𝞒 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL GAMMA
|
||||
'Δ': '\U0001d793', # 𝞓 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL DELTA
|
||||
'Θ': '\U0001d797', # 𝞗 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL THETA
|
||||
'Λ': '\U0001d79a', # 𝞚 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL LAMDA
|
||||
'Ξ': '\U0001d79d', # 𝞝 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL XI
|
||||
'Π': '\U0001d79f', # 𝞟 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL PI
|
||||
'Σ': '\U0001d7a2', # 𝞢 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL SIGMA
|
||||
'Υ': '\U0001d7a4', # 𝞤 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL UPSILON
|
||||
'Φ': '\U0001d7a5', # 𝞥 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL PHI
|
||||
'Ψ': '\U0001d7a7', # 𝞧 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL PSI
|
||||
'Ω': '\U0001d7a8', # 𝞨 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL OMEGA
|
||||
'α': '\U0001d7aa', # 𝞪 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL ALPHA
|
||||
'β': '\U0001d7ab', # 𝞫 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL BETA
|
||||
'γ': '\U0001d7ac', # 𝞬 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL GAMMA
|
||||
'δ': '\U0001d7ad', # 𝞭 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL DELTA
|
||||
'ε': '\U0001d7ae', # 𝞮 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL EPSILON
|
||||
'ζ': '\U0001d7af', # 𝞯 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL ZETA
|
||||
'η': '\U0001d7b0', # 𝞰 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL ETA
|
||||
'θ': '\U0001d7b1', # 𝞱 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL THETA
|
||||
'ι': '\U0001d7b2', # 𝞲 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL IOTA
|
||||
'κ': '\U0001d7b3', # 𝞳 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL KAPPA
|
||||
'λ': '\U0001d7b4', # 𝞴 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL LAMDA
|
||||
'μ': '\U0001d7b5', # 𝞵 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL MU
|
||||
'ν': '\U0001d7b6', # 𝞶 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL NU
|
||||
'ξ': '\U0001d7b7', # 𝞷 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL XI
|
||||
'π': '\U0001d7b9', # 𝞹 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL PI
|
||||
'ρ': '\U0001d7ba', # 𝞺 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL RHO
|
||||
'ς': '\U0001d7bb', # 𝞻 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL FINAL SIGMA
|
||||
'σ': '\U0001d7bc', # 𝞼 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL SIGMA
|
||||
'τ': '\U0001d7bd', # 𝞽 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL TAU
|
||||
'υ': '\U0001d7be', # 𝞾 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL UPSILON
|
||||
'φ': '\U0001d7bf', # 𝞿 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL PHI
|
||||
'χ': '\U0001d7c0', # 𝟀 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL CHI
|
||||
'ψ': '\U0001d7c1', # 𝟁 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL PSI
|
||||
'ω': '\U0001d7c2', # 𝟂 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL OMEGA
|
||||
'ϑ': '\U0001d7c5', # 𝟅 MATHEMATICAL SANS-SERIF BOLD ITALIC THETA SYMBOL
|
||||
'ϕ': '\U0001d7c7', # 𝟇 MATHEMATICAL SANS-SERIF BOLD ITALIC PHI SYMBOL
|
||||
'ϖ': '\U0001d7c9', # 𝟉 MATHEMATICAL SANS-SERIF BOLD ITALIC PI SYMBOL
|
||||
'ϰ': '\U0001d7c6', # 𝟆 MATHEMATICAL SANS-SERIF BOLD ITALIC KAPPA SYMBOL
|
||||
'ϱ': '\U0001d7c8', # 𝟈 MATHEMATICAL SANS-SERIF BOLD ITALIC RHO SYMBOL
|
||||
'ϵ': '\U0001d7c4', # 𝟄 MATHEMATICAL SANS-SERIF BOLD ITALIC EPSILON SYMBOL
|
||||
'∂': '\U0001d7c3', # 𝟃 MATHEMATICAL SANS-SERIF BOLD ITALIC PARTIAL DIFFERENTIAL
|
||||
'∇': '\U0001d7a9', # 𝞩 MATHEMATICAL SANS-SERIF BOLD ITALIC NABLA
|
||||
}
|
||||
|
||||
mathsfit = {
|
||||
'A': '\U0001d608', # 𝘈 MATHEMATICAL SANS-SERIF ITALIC CAPITAL A
|
||||
'B': '\U0001d609', # 𝘉 MATHEMATICAL SANS-SERIF ITALIC CAPITAL B
|
||||
'C': '\U0001d60a', # 𝘊 MATHEMATICAL SANS-SERIF ITALIC CAPITAL C
|
||||
'D': '\U0001d60b', # 𝘋 MATHEMATICAL SANS-SERIF ITALIC CAPITAL D
|
||||
'E': '\U0001d60c', # 𝘌 MATHEMATICAL SANS-SERIF ITALIC CAPITAL E
|
||||
'F': '\U0001d60d', # 𝘍 MATHEMATICAL SANS-SERIF ITALIC CAPITAL F
|
||||
'G': '\U0001d60e', # 𝘎 MATHEMATICAL SANS-SERIF ITALIC CAPITAL G
|
||||
'H': '\U0001d60f', # 𝘏 MATHEMATICAL SANS-SERIF ITALIC CAPITAL H
|
||||
'I': '\U0001d610', # 𝘐 MATHEMATICAL SANS-SERIF ITALIC CAPITAL I
|
||||
'J': '\U0001d611', # 𝘑 MATHEMATICAL SANS-SERIF ITALIC CAPITAL J
|
||||
'K': '\U0001d612', # 𝘒 MATHEMATICAL SANS-SERIF ITALIC CAPITAL K
|
||||
'L': '\U0001d613', # 𝘓 MATHEMATICAL SANS-SERIF ITALIC CAPITAL L
|
||||
'M': '\U0001d614', # 𝘔 MATHEMATICAL SANS-SERIF ITALIC CAPITAL M
|
||||
'N': '\U0001d615', # 𝘕 MATHEMATICAL SANS-SERIF ITALIC CAPITAL N
|
||||
'O': '\U0001d616', # 𝘖 MATHEMATICAL SANS-SERIF ITALIC CAPITAL O
|
||||
'P': '\U0001d617', # 𝘗 MATHEMATICAL SANS-SERIF ITALIC CAPITAL P
|
||||
'Q': '\U0001d618', # 𝘘 MATHEMATICAL SANS-SERIF ITALIC CAPITAL Q
|
||||
'R': '\U0001d619', # 𝘙 MATHEMATICAL SANS-SERIF ITALIC CAPITAL R
|
||||
'S': '\U0001d61a', # 𝘚 MATHEMATICAL SANS-SERIF ITALIC CAPITAL S
|
||||
'T': '\U0001d61b', # 𝘛 MATHEMATICAL SANS-SERIF ITALIC CAPITAL T
|
||||
'U': '\U0001d61c', # 𝘜 MATHEMATICAL SANS-SERIF ITALIC CAPITAL U
|
||||
'V': '\U0001d61d', # 𝘝 MATHEMATICAL SANS-SERIF ITALIC CAPITAL V
|
||||
'W': '\U0001d61e', # 𝘞 MATHEMATICAL SANS-SERIF ITALIC CAPITAL W
|
||||
'X': '\U0001d61f', # 𝘟 MATHEMATICAL SANS-SERIF ITALIC CAPITAL X
|
||||
'Y': '\U0001d620', # 𝘠 MATHEMATICAL SANS-SERIF ITALIC CAPITAL Y
|
||||
'Z': '\U0001d621', # 𝘡 MATHEMATICAL SANS-SERIF ITALIC CAPITAL Z
|
||||
'a': '\U0001d622', # 𝘢 MATHEMATICAL SANS-SERIF ITALIC SMALL A
|
||||
'b': '\U0001d623', # 𝘣 MATHEMATICAL SANS-SERIF ITALIC SMALL B
|
||||
'c': '\U0001d624', # 𝘤 MATHEMATICAL SANS-SERIF ITALIC SMALL C
|
||||
'd': '\U0001d625', # 𝘥 MATHEMATICAL SANS-SERIF ITALIC SMALL D
|
||||
'e': '\U0001d626', # 𝘦 MATHEMATICAL SANS-SERIF ITALIC SMALL E
|
||||
'f': '\U0001d627', # 𝘧 MATHEMATICAL SANS-SERIF ITALIC SMALL F
|
||||
'g': '\U0001d628', # 𝘨 MATHEMATICAL SANS-SERIF ITALIC SMALL G
|
||||
'h': '\U0001d629', # 𝘩 MATHEMATICAL SANS-SERIF ITALIC SMALL H
|
||||
'i': '\U0001d62a', # 𝘪 MATHEMATICAL SANS-SERIF ITALIC SMALL I
|
||||
'j': '\U0001d62b', # 𝘫 MATHEMATICAL SANS-SERIF ITALIC SMALL J
|
||||
'k': '\U0001d62c', # 𝘬 MATHEMATICAL SANS-SERIF ITALIC SMALL K
|
||||
'l': '\U0001d62d', # 𝘭 MATHEMATICAL SANS-SERIF ITALIC SMALL L
|
||||
'm': '\U0001d62e', # 𝘮 MATHEMATICAL SANS-SERIF ITALIC SMALL M
|
||||
'n': '\U0001d62f', # 𝘯 MATHEMATICAL SANS-SERIF ITALIC SMALL N
|
||||
'o': '\U0001d630', # 𝘰 MATHEMATICAL SANS-SERIF ITALIC SMALL O
|
||||
'p': '\U0001d631', # 𝘱 MATHEMATICAL SANS-SERIF ITALIC SMALL P
|
||||
'q': '\U0001d632', # 𝘲 MATHEMATICAL SANS-SERIF ITALIC SMALL Q
|
||||
'r': '\U0001d633', # 𝘳 MATHEMATICAL SANS-SERIF ITALIC SMALL R
|
||||
's': '\U0001d634', # 𝘴 MATHEMATICAL SANS-SERIF ITALIC SMALL S
|
||||
't': '\U0001d635', # 𝘵 MATHEMATICAL SANS-SERIF ITALIC SMALL T
|
||||
'u': '\U0001d636', # 𝘶 MATHEMATICAL SANS-SERIF ITALIC SMALL U
|
||||
'v': '\U0001d637', # 𝘷 MATHEMATICAL SANS-SERIF ITALIC SMALL V
|
||||
'w': '\U0001d638', # 𝘸 MATHEMATICAL SANS-SERIF ITALIC SMALL W
|
||||
'x': '\U0001d639', # 𝘹 MATHEMATICAL SANS-SERIF ITALIC SMALL X
|
||||
'y': '\U0001d63a', # 𝘺 MATHEMATICAL SANS-SERIF ITALIC SMALL Y
|
||||
'z': '\U0001d63b', # 𝘻 MATHEMATICAL SANS-SERIF ITALIC SMALL Z
|
||||
}
|
||||
|
||||
mathtt = {
|
||||
'0': '\U0001d7f6', # 𝟶 MATHEMATICAL MONOSPACE DIGIT ZERO
|
||||
'1': '\U0001d7f7', # 𝟷 MATHEMATICAL MONOSPACE DIGIT ONE
|
||||
'2': '\U0001d7f8', # 𝟸 MATHEMATICAL MONOSPACE DIGIT TWO
|
||||
'3': '\U0001d7f9', # 𝟹 MATHEMATICAL MONOSPACE DIGIT THREE
|
||||
'4': '\U0001d7fa', # 𝟺 MATHEMATICAL MONOSPACE DIGIT FOUR
|
||||
'5': '\U0001d7fb', # 𝟻 MATHEMATICAL MONOSPACE DIGIT FIVE
|
||||
'6': '\U0001d7fc', # 𝟼 MATHEMATICAL MONOSPACE DIGIT SIX
|
||||
'7': '\U0001d7fd', # 𝟽 MATHEMATICAL MONOSPACE DIGIT SEVEN
|
||||
'8': '\U0001d7fe', # 𝟾 MATHEMATICAL MONOSPACE DIGIT EIGHT
|
||||
'9': '\U0001d7ff', # 𝟿 MATHEMATICAL MONOSPACE DIGIT NINE
|
||||
'A': '\U0001d670', # 𝙰 MATHEMATICAL MONOSPACE CAPITAL A
|
||||
'B': '\U0001d671', # 𝙱 MATHEMATICAL MONOSPACE CAPITAL B
|
||||
'C': '\U0001d672', # 𝙲 MATHEMATICAL MONOSPACE CAPITAL C
|
||||
'D': '\U0001d673', # 𝙳 MATHEMATICAL MONOSPACE CAPITAL D
|
||||
'E': '\U0001d674', # 𝙴 MATHEMATICAL MONOSPACE CAPITAL E
|
||||
'F': '\U0001d675', # 𝙵 MATHEMATICAL MONOSPACE CAPITAL F
|
||||
'G': '\U0001d676', # 𝙶 MATHEMATICAL MONOSPACE CAPITAL G
|
||||
'H': '\U0001d677', # 𝙷 MATHEMATICAL MONOSPACE CAPITAL H
|
||||
'I': '\U0001d678', # 𝙸 MATHEMATICAL MONOSPACE CAPITAL I
|
||||
'J': '\U0001d679', # 𝙹 MATHEMATICAL MONOSPACE CAPITAL J
|
||||
'K': '\U0001d67a', # 𝙺 MATHEMATICAL MONOSPACE CAPITAL K
|
||||
'L': '\U0001d67b', # 𝙻 MATHEMATICAL MONOSPACE CAPITAL L
|
||||
'M': '\U0001d67c', # 𝙼 MATHEMATICAL MONOSPACE CAPITAL M
|
||||
'N': '\U0001d67d', # 𝙽 MATHEMATICAL MONOSPACE CAPITAL N
|
||||
'O': '\U0001d67e', # 𝙾 MATHEMATICAL MONOSPACE CAPITAL O
|
||||
'P': '\U0001d67f', # 𝙿 MATHEMATICAL MONOSPACE CAPITAL P
|
||||
'Q': '\U0001d680', # 𝚀 MATHEMATICAL MONOSPACE CAPITAL Q
|
||||
'R': '\U0001d681', # 𝚁 MATHEMATICAL MONOSPACE CAPITAL R
|
||||
'S': '\U0001d682', # 𝚂 MATHEMATICAL MONOSPACE CAPITAL S
|
||||
'T': '\U0001d683', # 𝚃 MATHEMATICAL MONOSPACE CAPITAL T
|
||||
'U': '\U0001d684', # 𝚄 MATHEMATICAL MONOSPACE CAPITAL U
|
||||
'V': '\U0001d685', # 𝚅 MATHEMATICAL MONOSPACE CAPITAL V
|
||||
'W': '\U0001d686', # 𝚆 MATHEMATICAL MONOSPACE CAPITAL W
|
||||
'X': '\U0001d687', # 𝚇 MATHEMATICAL MONOSPACE CAPITAL X
|
||||
'Y': '\U0001d688', # 𝚈 MATHEMATICAL MONOSPACE CAPITAL Y
|
||||
'Z': '\U0001d689', # 𝚉 MATHEMATICAL MONOSPACE CAPITAL Z
|
||||
'a': '\U0001d68a', # 𝚊 MATHEMATICAL MONOSPACE SMALL A
|
||||
'b': '\U0001d68b', # 𝚋 MATHEMATICAL MONOSPACE SMALL B
|
||||
'c': '\U0001d68c', # 𝚌 MATHEMATICAL MONOSPACE SMALL C
|
||||
'd': '\U0001d68d', # 𝚍 MATHEMATICAL MONOSPACE SMALL D
|
||||
'e': '\U0001d68e', # 𝚎 MATHEMATICAL MONOSPACE SMALL E
|
||||
'f': '\U0001d68f', # 𝚏 MATHEMATICAL MONOSPACE SMALL F
|
||||
'g': '\U0001d690', # 𝚐 MATHEMATICAL MONOSPACE SMALL G
|
||||
'h': '\U0001d691', # 𝚑 MATHEMATICAL MONOSPACE SMALL H
|
||||
'i': '\U0001d692', # 𝚒 MATHEMATICAL MONOSPACE SMALL I
|
||||
'j': '\U0001d693', # 𝚓 MATHEMATICAL MONOSPACE SMALL J
|
||||
'k': '\U0001d694', # 𝚔 MATHEMATICAL MONOSPACE SMALL K
|
||||
'l': '\U0001d695', # 𝚕 MATHEMATICAL MONOSPACE SMALL L
|
||||
'm': '\U0001d696', # 𝚖 MATHEMATICAL MONOSPACE SMALL M
|
||||
'n': '\U0001d697', # 𝚗 MATHEMATICAL MONOSPACE SMALL N
|
||||
'o': '\U0001d698', # 𝚘 MATHEMATICAL MONOSPACE SMALL O
|
||||
'p': '\U0001d699', # 𝚙 MATHEMATICAL MONOSPACE SMALL P
|
||||
'q': '\U0001d69a', # 𝚚 MATHEMATICAL MONOSPACE SMALL Q
|
||||
'r': '\U0001d69b', # 𝚛 MATHEMATICAL MONOSPACE SMALL R
|
||||
's': '\U0001d69c', # 𝚜 MATHEMATICAL MONOSPACE SMALL S
|
||||
't': '\U0001d69d', # 𝚝 MATHEMATICAL MONOSPACE SMALL T
|
||||
'u': '\U0001d69e', # 𝚞 MATHEMATICAL MONOSPACE SMALL U
|
||||
'v': '\U0001d69f', # 𝚟 MATHEMATICAL MONOSPACE SMALL V
|
||||
'w': '\U0001d6a0', # 𝚠 MATHEMATICAL MONOSPACE SMALL W
|
||||
'x': '\U0001d6a1', # 𝚡 MATHEMATICAL MONOSPACE SMALL X
|
||||
'y': '\U0001d6a2', # 𝚢 MATHEMATICAL MONOSPACE SMALL Y
|
||||
'z': '\U0001d6a3', # 𝚣 MATHEMATICAL MONOSPACE SMALL Z
|
||||
}
|
|
@ -0,0 +1,478 @@
|
|||
# :Id: $Id: mathml_elements.py 9561 2024-03-14 16:34:48Z milde $
|
||||
# :Copyright: 2024 Günter Milde.
|
||||
#
|
||||
# :License: Released under the terms of the `2-Clause BSD license`_, in short:
|
||||
#
|
||||
# Copying and distribution of this file, with or without modification,
|
||||
# are permitted in any medium without royalty provided the copyright
|
||||
# notice and this notice are preserved.
|
||||
# This file is offered as-is, without any warranty.
|
||||
#
|
||||
# .. _2-Clause BSD license: https://opensource.org/licenses/BSD-2-Clause
|
||||
|
||||
"""MathML element classes based on `xml.etree`.
|
||||
|
||||
The module is intended for programmatic generation of MathML
|
||||
and covers the part of `MathML Core`_ that is required by
|
||||
Docutil's *TeX math to MathML* converter.
|
||||
|
||||
This module is PROVISIONAL:
|
||||
the API is not settled and may change with any minor Docutils version.
|
||||
|
||||
.. _MathML Core: https://www.w3.org/TR/mathml-core/
|
||||
"""
|
||||
|
||||
# Usage:
|
||||
#
|
||||
# >>> from mathml_elements import *
|
||||
|
||||
import numbers
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
|
||||
GLOBAL_ATTRIBUTES = (
|
||||
'class', # space-separated list of element classes
|
||||
# 'data-*', # custom data attributes (see HTML)
|
||||
'dir', # directionality ('ltr', 'rtl')
|
||||
'displaystyle', # True: normal, False: compact
|
||||
'id', # unique identifier
|
||||
# 'mathbackground', # color definition, deprecated
|
||||
# 'mathcolor', # color definition, deprecated
|
||||
# 'mathsize', # font-size, deprecated
|
||||
'nonce', # cryptographic nonce ("number used once")
|
||||
'scriptlevel', # math-depth for the element
|
||||
'style', # CSS styling declarations
|
||||
'tabindex', # indicate if the element takes input focus
|
||||
)
|
||||
"""Global MathML attributes
|
||||
|
||||
https://w3c.github.io/mathml-core/#global-attributes
|
||||
"""
|
||||
|
||||
|
||||
# Base classes
|
||||
# ------------
|
||||
|
||||
class MathElement(ET.Element):
|
||||
"""Base class for MathML elements."""
|
||||
|
||||
nchildren = None
|
||||
"""Expected number of children or None"""
|
||||
# cf. https://www.w3.org/TR/MathML3/chapter3.html#id.3.1.3.2
|
||||
parent = None
|
||||
"""Parent node in MathML element tree."""
|
||||
|
||||
def __init__(self, *children, **attributes):
|
||||
"""Set up node with `children` and `attributes`.
|
||||
|
||||
Attribute names are normalised to lowercase.
|
||||
You may use "CLASS" to set a "class" attribute.
|
||||
Attribute values are converted to strings
|
||||
(with True -> "true" and False -> "false").
|
||||
|
||||
>>> math(CLASS='test', level=3, split=True)
|
||||
math(class='test', level='3', split='true')
|
||||
>>> math(CLASS='test', level=3, split=True).toxml()
|
||||
'<math class="test" level="3" split="true"></math>'
|
||||
|
||||
"""
|
||||
attrib = {k.lower(): self.a_str(v) for k, v in attributes.items()}
|
||||
super().__init__(self.__class__.__name__, **attrib)
|
||||
self.extend(children)
|
||||
|
||||
@staticmethod
|
||||
def a_str(v):
|
||||
# Return string representation for attribute value `v`.
|
||||
if isinstance(v, bool):
|
||||
return str(v).lower()
|
||||
return str(v)
|
||||
|
||||
def __repr__(self):
|
||||
"""Return full string representation."""
|
||||
args = [repr(child) for child in self]
|
||||
if self.text:
|
||||
args.append(repr(self.text))
|
||||
if self.nchildren != self.__class__.nchildren:
|
||||
args.append(f'nchildren={self.nchildren}')
|
||||
if getattr(self, 'switch', None):
|
||||
args.append('switch=True')
|
||||
args += [f'{k}={v!r}' for k, v in self.items() if v is not None]
|
||||
return f'{self.tag}({", ".join(args)})'
|
||||
|
||||
def __str__(self):
|
||||
"""Return concise, informal string representation."""
|
||||
if self.text:
|
||||
args = repr(self.text)
|
||||
else:
|
||||
args = ', '.join(f'{child}' for child in self)
|
||||
return f'{self.tag}({args})'
|
||||
|
||||
def set(self, key, value):
|
||||
super().set(key, self.a_str(value))
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
if self.nchildren == 0:
|
||||
raise TypeError(f'Element "{self}" does not take children.')
|
||||
if isinstance(value, MathElement):
|
||||
value.parent = self
|
||||
else: # value may be an iterable
|
||||
if self.nchildren and len(self) + len(value) > self.nchildren:
|
||||
raise TypeError(f'Element "{self}" takes only {self.nchildren}'
|
||||
' children')
|
||||
for e in value:
|
||||
e.parent = self
|
||||
super().__setitem__(key, value)
|
||||
|
||||
def is_full(self):
|
||||
"""Return boolean indicating whether children may be appended."""
|
||||
return self.nchildren is not None and len(self) >= self.nchildren
|
||||
|
||||
def close(self):
|
||||
"""Close element and return first non-full anchestor or None."""
|
||||
self.nchildren = len(self) # mark node as full
|
||||
parent = self.parent
|
||||
while parent is not None and parent.is_full():
|
||||
parent = parent.parent
|
||||
return parent
|
||||
|
||||
def append(self, element):
|
||||
"""Append `element` and return new "current node" (insertion point).
|
||||
|
||||
Append as child element and set the internal `parent` attribute.
|
||||
|
||||
If self is already full, raise TypeError.
|
||||
|
||||
If self is full after appending, call `self.close()`
|
||||
(returns first non-full anchestor or None) else return `self`.
|
||||
"""
|
||||
if self.is_full():
|
||||
if self.nchildren:
|
||||
status = f'takes only {self.nchildren} children'
|
||||
else:
|
||||
status = 'does not take children'
|
||||
raise TypeError(f'Element "{self}" {status}.')
|
||||
super().append(element)
|
||||
element.parent = self
|
||||
if self.is_full():
|
||||
return self.close()
|
||||
return self
|
||||
|
||||
def extend(self, elements):
|
||||
"""Sequentially append `elements`. Return new "current node".
|
||||
|
||||
Raise TypeError if overfull.
|
||||
"""
|
||||
current_node = self
|
||||
for element in elements:
|
||||
current_node = self.append(element)
|
||||
return current_node
|
||||
|
||||
def pop(self, index=-1):
|
||||
element = self[index]
|
||||
del self[index]
|
||||
return element
|
||||
|
||||
def in_block(self):
|
||||
"""Return True, if `self` or an ancestor has ``display='block'``.
|
||||
|
||||
Used to find out whether we are in inline vs. displayed maths.
|
||||
"""
|
||||
if self.get('display') is None:
|
||||
try:
|
||||
return self.parent.in_block()
|
||||
except AttributeError:
|
||||
return False
|
||||
return self.get('display') == 'block'
|
||||
|
||||
# XML output:
|
||||
|
||||
def indent_xml(self, space=' ', level=0):
|
||||
"""Format XML output with indents.
|
||||
|
||||
Use with care:
|
||||
Formatting whitespace is permanently added to the
|
||||
`text` and `tail` attributes of `self` and anchestors!
|
||||
"""
|
||||
ET.indent(self, space, level)
|
||||
|
||||
def unindent_xml(self):
|
||||
"""Strip whitespace at the end of `text` and `tail` attributes...
|
||||
|
||||
to revert changes made by the `indent_xml()` method.
|
||||
Use with care, trailing whitespace from the original may be lost.
|
||||
"""
|
||||
for e in self.iter():
|
||||
if not isinstance(e, MathToken) and e.text:
|
||||
e.text = e.text.rstrip()
|
||||
if e.tail:
|
||||
e.tail = e.tail.rstrip()
|
||||
|
||||
def toxml(self, encoding=None):
|
||||
"""Return an XML representation of the element.
|
||||
|
||||
By default, the return value is a `str` instance. With an explicit
|
||||
`encoding` argument, the result is a `bytes` instance in the
|
||||
specified encoding. The XML default encoding is UTF-8, any other
|
||||
encoding must be specified in an XML document header.
|
||||
|
||||
Name and encoding handling match `xml.dom.minidom.Node.toxml()`
|
||||
while `etree.Element.tostring()` returns `bytes` by default.
|
||||
"""
|
||||
xml = ET.tostring(self, encoding or 'unicode',
|
||||
short_empty_elements=False)
|
||||
# Visible representation for "Apply Function" character:
|
||||
try:
|
||||
xml = xml.replace('\u2061', '⁡')
|
||||
except TypeError:
|
||||
xml = xml.replace('\u2061'.encode(encoding), b'⁡')
|
||||
return xml
|
||||
|
||||
|
||||
# Group sub-expressions in a horizontal row
|
||||
#
|
||||
# The elements <msqrt>, <mstyle>, <merror>, <mpadded>, <mphantom>,
|
||||
# <menclose>, <mtd>, <mscarry>, and <math> treat their contents
|
||||
# as a single inferred mrow formed from all their children.
|
||||
# (https://www.w3.org/TR/mathml4/#presm_inferredmrow)
|
||||
#
|
||||
# MathML Core uses the term "anonymous mrow element".
|
||||
|
||||
class MathRow(MathElement):
|
||||
"""Base class for elements treating content as a single mrow."""
|
||||
|
||||
|
||||
# 2d Schemata
|
||||
|
||||
class MathSchema(MathElement):
|
||||
"""Base class for schemata expecting 2 or more children.
|
||||
|
||||
The special attribute `switch` indicates that the last two child
|
||||
elements are in reversed order and must be switched before XML-export.
|
||||
See `msub` for an example.
|
||||
"""
|
||||
nchildren = 2
|
||||
|
||||
def __init__(self, *children, **kwargs):
|
||||
self.switch = kwargs.pop('switch', False)
|
||||
super().__init__(*children, **kwargs)
|
||||
|
||||
def append(self, element):
|
||||
"""Append element. Normalize order and close if full."""
|
||||
current_node = super().append(element)
|
||||
if self.switch and self.is_full():
|
||||
self[-1], self[-2] = self[-2], self[-1]
|
||||
self.switch = False
|
||||
return current_node
|
||||
|
||||
|
||||
# Token elements represent the smallest units of mathematical notation which
|
||||
# carry meaning.
|
||||
|
||||
class MathToken(MathElement):
|
||||
"""Token Element: contains textual data instead of children.
|
||||
|
||||
Expect text data on initialisation.
|
||||
"""
|
||||
nchildren = 0
|
||||
|
||||
def __init__(self, text, **attributes):
|
||||
super().__init__(**attributes)
|
||||
if not isinstance(text, (str, numbers.Number)):
|
||||
raise ValueError('MathToken element expects `str` or number,'
|
||||
f' not "{text}".')
|
||||
self.text = str(text)
|
||||
|
||||
|
||||
# MathML element classes
|
||||
# ----------------------
|
||||
|
||||
class math(MathRow):
|
||||
"""Top-level MathML element, a single mathematical formula."""
|
||||
|
||||
|
||||
# Token elements
|
||||
# ~~~~~~~~~~~~~~
|
||||
|
||||
class mtext(MathToken):
|
||||
"""Arbitrary text with no notational meaning."""
|
||||
|
||||
|
||||
class mi(MathToken):
|
||||
"""Identifier, such as a function name, variable or symbolic constant."""
|
||||
|
||||
|
||||
class mn(MathToken):
|
||||
"""Numeric literal.
|
||||
|
||||
>>> mn(3.41).toxml()
|
||||
'<mn>3.41</mn>'
|
||||
|
||||
Normally a sequence of digits with a possible separator (a dot or a comma).
|
||||
(Values with comma must be specified as `str`.)
|
||||
"""
|
||||
|
||||
|
||||
class mo(MathToken):
|
||||
"""Operator, Fence, Separator, or Accent.
|
||||
|
||||
>>> mo('<').toxml()
|
||||
'<mo><</mo>'
|
||||
|
||||
Besides operators in strict mathematical meaning, this element also
|
||||
includes "operators" like parentheses, separators like comma and
|
||||
semicolon, or "absolute value" bars.
|
||||
"""
|
||||
|
||||
|
||||
class mspace(MathElement):
|
||||
"""Blank space, whose size is set by its attributes.
|
||||
|
||||
Takes additional attributes `depth`, `height`, `width`.
|
||||
Takes no children and no text.
|
||||
|
||||
See also `mphantom`.
|
||||
"""
|
||||
nchildren = 0
|
||||
|
||||
|
||||
# General Layout Schemata
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
class mrow(MathRow):
|
||||
"""Generic element to group children as a horizontal row.
|
||||
|
||||
Removed on closing if not required (see `mrow.close()`).
|
||||
"""
|
||||
|
||||
def transfer_attributes(self, other):
|
||||
"""Transfer attributes from self to other.
|
||||
|
||||
"List values" (class, style) are appended to existing values,
|
||||
other values replace existing values.
|
||||
"""
|
||||
delimiters = {'class': ' ', 'style': '; '}
|
||||
for k, v in self.items():
|
||||
if k in ('class', 'style') and v:
|
||||
if other.get(k):
|
||||
v = delimiters[k].join(
|
||||
(other.get(k).rstrip(delimiters[k]), v))
|
||||
other.set(k, v)
|
||||
|
||||
def close(self):
|
||||
"""Close element and return first non-full anchestor or None.
|
||||
|
||||
Remove <mrow> if it has only one child element.
|
||||
"""
|
||||
parent = self.parent
|
||||
# replace `self` with single child
|
||||
if parent is not None and len(self) == 1:
|
||||
child = self[0]
|
||||
try:
|
||||
parent[list(parent).index(self)] = child
|
||||
child.parent = parent
|
||||
except (AttributeError, ValueError):
|
||||
return None
|
||||
self.transfer_attributes(child)
|
||||
return super().close()
|
||||
|
||||
|
||||
class mfrac(MathSchema):
|
||||
"""Fractions or fraction-like objects such as binomial coefficients."""
|
||||
|
||||
|
||||
class msqrt(MathRow):
|
||||
"""Square root. See also `mroot`."""
|
||||
nchildren = 1 # \sqrt expects one argument or a group
|
||||
|
||||
|
||||
class mroot(MathSchema):
|
||||
"""Roots with an explicit index. See also `msqrt`."""
|
||||
|
||||
|
||||
class mstyle(MathRow):
|
||||
"""Style Change.
|
||||
|
||||
In modern browsers, <mstyle> is equivalent to an <mrow> element.
|
||||
However, <mstyle> may still be relevant for compatibility with
|
||||
MathML implementations outside browsers.
|
||||
"""
|
||||
|
||||
|
||||
class merror(MathRow):
|
||||
"""Display contents as error messages."""
|
||||
|
||||
|
||||
class menclose(MathRow):
|
||||
"""Renders content inside an enclosing notation...
|
||||
|
||||
... specified by the notation attribute.
|
||||
|
||||
Non-standard but still required by Firefox for boxed expressions.
|
||||
"""
|
||||
nchildren = 1 # \boxed expects one argument or a group
|
||||
|
||||
|
||||
class mpadded(MathRow):
|
||||
"""Adjust space around content."""
|
||||
# nchildren = 1 # currently not used by latex2mathml
|
||||
|
||||
|
||||
class mphantom(MathRow):
|
||||
"""Placeholder: Rendered invisibly but dimensions are kept."""
|
||||
nchildren = 1 # \phantom expects one argument or a group
|
||||
|
||||
|
||||
# Script and Limit Schemata
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
class msub(MathSchema):
|
||||
"""Attach a subscript to an expression."""
|
||||
|
||||
|
||||
class msup(MathSchema):
|
||||
"""Attach a superscript to an expression."""
|
||||
|
||||
|
||||
class msubsup(MathSchema):
|
||||
"""Attach both a subscript and a superscript to an expression."""
|
||||
nchildren = 3
|
||||
|
||||
# Examples:
|
||||
#
|
||||
# The `switch` attribute reverses the order of the last two children:
|
||||
# >>> msub(mn(1), mn(2)).toxml()
|
||||
# '<msub><mn>1</mn><mn>2</mn></msub>'
|
||||
# >>> msub(mn(1), mn(2), switch=True).toxml()
|
||||
# '<msub><mn>2</mn><mn>1</mn></msub>'
|
||||
#
|
||||
# >>> msubsup(mi('base'), mn(1), mn(2)).toxml()
|
||||
# '<msubsup><mi>base</mi><mn>1</mn><mn>2</mn></msubsup>'
|
||||
# >>> msubsup(mi('base'), mn(1), mn(2), switch=True).toxml()
|
||||
# '<msubsup><mi>base</mi><mn>2</mn><mn>1</mn></msubsup>'
|
||||
|
||||
|
||||
class munder(msub):
|
||||
"""Attach an accent or a limit under an expression."""
|
||||
|
||||
|
||||
class mover(msup):
|
||||
"""Attach an accent or a limit over an expression."""
|
||||
|
||||
|
||||
class munderover(msubsup):
|
||||
"""Attach accents or limits both under and over an expression."""
|
||||
|
||||
|
||||
# Tabular Math
|
||||
# ~~~~~~~~~~~~
|
||||
|
||||
class mtable(MathElement):
|
||||
"""Table or matrix element."""
|
||||
|
||||
|
||||
class mtr(MathRow):
|
||||
"""Row in a table or a matrix."""
|
||||
|
||||
|
||||
class mtd(MathRow):
|
||||
"""Cell in a table or a matrix"""
|
|
@ -0,0 +1,261 @@
|
|||
# :Id: $Id: tex2mathml_extern.py 9536 2024-02-01 13:04:22Z milde $
|
||||
# :Copyright: © 2015 Günter Milde.
|
||||
# :License: Released under the terms of the `2-Clause BSD license`__, in short:
|
||||
#
|
||||
# Copying and distribution of this file, with or without modification,
|
||||
# are permitted in any medium without royalty provided the copyright
|
||||
# notice and this notice are preserved.
|
||||
# This file is offered as-is, without any warranty.
|
||||
#
|
||||
# __ https://opensource.org/licenses/BSD-2-Clause
|
||||
|
||||
"""Wrappers for TeX->MathML conversion by external tools
|
||||
|
||||
This module is provisional:
|
||||
the API is not settled and may change with any minor Docutils version.
|
||||
"""
|
||||
|
||||
import subprocess
|
||||
|
||||
from docutils import nodes
|
||||
from docutils.utils.math import MathError, wrap_math_code
|
||||
|
||||
# `latexml` expects a complete document:
|
||||
document_template = r"""\documentclass{article}
|
||||
\begin{document}
|
||||
%s
|
||||
\end{document}
|
||||
"""
|
||||
|
||||
|
||||
def _check_result(result, details=[]):
|
||||
# raise MathError if the conversion went wrong
|
||||
# :details: list of doctree nodes with additional info
|
||||
msg = ''
|
||||
if not details and result.stderr:
|
||||
details = [nodes.paragraph('', result.stderr, classes=['pre-wrap'])]
|
||||
if details:
|
||||
msg = f'TeX to MathML converter `{result.args[0]}` failed:'
|
||||
elif result.returncode:
|
||||
msg = (f'TeX to MathMl converter `{result.args[0]}` '
|
||||
f'exited with Errno {result.returncode}.')
|
||||
elif not result.stdout:
|
||||
msg = f'TeX to MathML converter `{result.args[0]}` returned no MathML.'
|
||||
if msg:
|
||||
raise MathError(msg, details=details)
|
||||
|
||||
|
||||
def blahtexml(math_code, as_block=False):
|
||||
"""Convert LaTeX math code to MathML with blahtexml__.
|
||||
|
||||
__ http://gva.noekeon.org/blahtexml/
|
||||
"""
|
||||
args = ['blahtexml',
|
||||
'--mathml',
|
||||
'--indented',
|
||||
'--spacing', 'moderate',
|
||||
'--mathml-encoding', 'raw',
|
||||
'--other-encoding', 'raw',
|
||||
'--doctype-xhtml+mathml',
|
||||
'--annotate-TeX',
|
||||
]
|
||||
# "blahtexml" expects LaTeX code without math-mode-switch.
|
||||
# We still need to tell it about displayed equation(s).
|
||||
mathml_args = ' display="block"' if as_block else ''
|
||||
_wrapped = wrap_math_code(math_code, as_block)
|
||||
if '{align*}' in _wrapped:
|
||||
math_code = _wrapped.replace('{align*}', '{aligned}')
|
||||
|
||||
result = subprocess.run(args, input=math_code,
|
||||
capture_output=True, text=True)
|
||||
|
||||
# blahtexml writes <error> messages to stdout
|
||||
if '<error>' in result.stdout:
|
||||
result.stderr = result.stdout[result.stdout.find('<message>')+9:
|
||||
result.stdout.find('</message>')]
|
||||
else:
|
||||
result.stdout = result.stdout[result.stdout.find('<markup>')+9:
|
||||
result.stdout.find('</markup>')]
|
||||
_check_result(result)
|
||||
return (f'<math xmlns="http://www.w3.org/1998/Math/MathML"{mathml_args}>'
|
||||
f'\n{result.stdout}</math>')
|
||||
|
||||
|
||||
def latexml(math_code, as_block=False):
|
||||
"""Convert LaTeX math code to MathML with LaTeXML__.
|
||||
|
||||
Comprehensive macro support but **very** slow.
|
||||
|
||||
__ http://dlmf.nist.gov/LaTeXML/
|
||||
"""
|
||||
|
||||
# LaTeXML works in 2 stages, expects complete documents.
|
||||
#
|
||||
# The `latexmlmath`__ convenience wrapper does not support block-level
|
||||
# (displayed) equations.
|
||||
#
|
||||
# __ https://metacpan.org/dist/LaTeXML/view/bin/latexmlmath
|
||||
args1 = ['latexml',
|
||||
'-', # read from stdin
|
||||
'--preload=amsmath',
|
||||
'--preload=amssymb', # also loads amsfonts
|
||||
'--inputencoding=utf8',
|
||||
'--',
|
||||
]
|
||||
math_code = document_template % wrap_math_code(math_code, as_block)
|
||||
|
||||
result1 = subprocess.run(args1, input=math_code,
|
||||
capture_output=True, text=True)
|
||||
if result1.stderr:
|
||||
result1.stderr = '\n'.join(line for line in result1.stderr.splitlines()
|
||||
if line.startswith('Error:')
|
||||
or line.startswith('Warning:')
|
||||
or line.startswith('Fatal:'))
|
||||
_check_result(result1)
|
||||
|
||||
args2 = ['latexmlpost',
|
||||
'-',
|
||||
'--nonumbersections',
|
||||
'--format=html5', # maths included as MathML
|
||||
'--omitdoctype', # Make it simple, we only need the maths.
|
||||
'--noscan', # ...
|
||||
'--nocrossref',
|
||||
'--nographicimages',
|
||||
'--nopictureimages',
|
||||
'--nodefaultresources', # do not copy *.css files to output dir
|
||||
'--'
|
||||
]
|
||||
result2 = subprocess.run(args2, input=result1.stdout,
|
||||
capture_output=True, text=True)
|
||||
# Extract MathML from HTML document:
|
||||
# <table> with <math> in cells for "align", <math> element else.
|
||||
start = result2.stdout.find('<table class="ltx_equationgroup')
|
||||
if start != -1:
|
||||
stop = result2.stdout.find('</table>', start)+8
|
||||
result2.stdout = result2.stdout[start:stop].replace(
|
||||
'ltx_equationgroup', 'borderless align-center')
|
||||
else:
|
||||
result2.stdout = result2.stdout[result2.stdout.find('<math'):
|
||||
result2.stdout.find('</math>')+7]
|
||||
# Search for error messages
|
||||
if result2.stdout:
|
||||
_msg_source = result2.stdout # latexmlpost reports errors in output
|
||||
else:
|
||||
_msg_source = result2.stderr # just in case
|
||||
result2.stderr = '\n'.join(line for line in _msg_source.splitlines()
|
||||
if line.startswith('Error:')
|
||||
or line.startswith('Warning:')
|
||||
or line.startswith('Fatal:'))
|
||||
_check_result(result2)
|
||||
return result2.stdout
|
||||
|
||||
|
||||
def pandoc(math_code, as_block=False):
|
||||
"""Convert LaTeX math code to MathML with pandoc__.
|
||||
|
||||
__ https://pandoc.org/
|
||||
"""
|
||||
args = ['pandoc',
|
||||
'--mathml',
|
||||
'--from=latex',
|
||||
]
|
||||
result = subprocess.run(args, input=wrap_math_code(math_code, as_block),
|
||||
capture_output=True, text=True)
|
||||
|
||||
result.stdout = result.stdout[result.stdout.find('<math'):
|
||||
result.stdout.find('</math>')+7]
|
||||
# Pandoc (2.9.2.1) messages are pre-formatted for the terminal:
|
||||
# 1. summary
|
||||
# 2. math source (part)
|
||||
# 3. error spot indicator '^' (works only in a literal block)
|
||||
# 4. assumed problem
|
||||
# 5. assumed solution (may be wrong or confusing)
|
||||
# Construct a "details" list:
|
||||
details = []
|
||||
if result.stderr:
|
||||
lines = result.stderr.splitlines()
|
||||
details.append(nodes.paragraph('', lines[0]))
|
||||
details.append(nodes.literal_block('', '\n'.join(lines[1:3])))
|
||||
details.append(nodes.paragraph('', '\n'.join(lines[3:]),
|
||||
classes=['pre-wrap']))
|
||||
_check_result(result, details=details)
|
||||
return result.stdout
|
||||
|
||||
|
||||
def ttm(math_code, as_block=False):
|
||||
"""Convert LaTeX math code to MathML with TtM__.
|
||||
|
||||
Aged, limited, but fast.
|
||||
|
||||
__ http://silas.psfc.mit.edu/tth/mml/
|
||||
"""
|
||||
args = ['ttm',
|
||||
'-L', # source is LaTeX snippet
|
||||
'-r'] # output MathML snippet
|
||||
math_code = wrap_math_code(math_code, as_block)
|
||||
|
||||
# "ttm" does not support UTF-8 input. (Docutils converts most math
|
||||
# characters to LaTeX commands before calling this function.)
|
||||
try:
|
||||
result = subprocess.run(args, input=math_code,
|
||||
capture_output=True, text=True,
|
||||
encoding='ISO-8859-1')
|
||||
except UnicodeEncodeError as err:
|
||||
raise MathError(err)
|
||||
|
||||
result.stdout = result.stdout[result.stdout.find('<math'):
|
||||
result.stdout.find('</math>')+7]
|
||||
if as_block:
|
||||
result.stdout = result.stdout.replace('<math xmlns=',
|
||||
'<math display="block" xmlns=')
|
||||
result.stderr = '\n'.join(line[5:] + '.'
|
||||
for line in result.stderr.splitlines()
|
||||
if line.startswith('**** '))
|
||||
_check_result(result)
|
||||
return result.stdout
|
||||
|
||||
|
||||
# self-test
|
||||
|
||||
if __name__ == "__main__":
|
||||
example = (r'\frac{\partial \sin^2(\alpha)}{\partial \vec r}'
|
||||
r'\varpi \mathbb{R} \, \text{Grüße}')
|
||||
|
||||
print("""<!DOCTYPE html>
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
|
||||
<head>
|
||||
<title>test external mathml converters</title>
|
||||
</head>
|
||||
<body>
|
||||
<p>Test external converters</p>
|
||||
<p>
|
||||
""")
|
||||
print(f'latexml: {latexml(example)},')
|
||||
print(f'ttm: {ttm(example.replace("mathbb", "mathbf"))},')
|
||||
print(f'blahtexml: {blahtexml(example)},')
|
||||
print(f'pandoc: {pandoc(example)}.')
|
||||
print('</p>')
|
||||
|
||||
print('<p>latexml:</p>')
|
||||
print(latexml(example, as_block=True))
|
||||
print('<p>ttm:</p>')
|
||||
print(ttm(example.replace('mathbb', 'mathbf'), as_block=True))
|
||||
print('<p>blahtexml:</p>')
|
||||
print(blahtexml(example, as_block=True))
|
||||
print('<p>pandoc:</p>')
|
||||
print(pandoc(example, as_block=True))
|
||||
|
||||
print('</main>\n</body>\n</html>')
|
||||
|
||||
buggy = r'\sinc \phy'
|
||||
# buggy = '\sqrt[e]'
|
||||
try:
|
||||
# print(blahtexml(buggy))
|
||||
# print(latexml(f'${buggy}$'))
|
||||
print(pandoc(f'${buggy}$'))
|
||||
# print(ttm(f'${buggy}$'))
|
||||
except MathError as err:
|
||||
print(err)
|
||||
print(err.details)
|
||||
for node in err.details:
|
||||
print(node.astext())
|
|
@ -0,0 +1,730 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
# LaTeX math to Unicode symbols translation dictionaries.
|
||||
# Generated with ``write_tex2unichar.py`` from the data in
|
||||
# http://milde.users.sourceforge.net/LUCR/Math/
|
||||
|
||||
# Includes commands from:
|
||||
# standard LaTeX
|
||||
# amssymb
|
||||
# amsmath
|
||||
# amsxtra
|
||||
# bbold
|
||||
# esint
|
||||
# mathabx
|
||||
# mathdots
|
||||
# txfonts
|
||||
# stmaryrd
|
||||
# wasysym
|
||||
|
||||
mathaccent = {
|
||||
'acute': '\u0301', # ́ COMBINING ACUTE ACCENT
|
||||
'bar': '\u0304', # ̄ COMBINING MACRON
|
||||
'breve': '\u0306', # ̆ COMBINING BREVE
|
||||
'check': '\u030c', # ̌ COMBINING CARON
|
||||
'ddddot': '\u20dc', # ⃜ COMBINING FOUR DOTS ABOVE
|
||||
'dddot': '\u20db', # ⃛ COMBINING THREE DOTS ABOVE
|
||||
'ddot': '\u0308', # ̈ COMBINING DIAERESIS
|
||||
'dot': '\u0307', # ̇ COMBINING DOT ABOVE
|
||||
'grave': '\u0300', # ̀ COMBINING GRAVE ACCENT
|
||||
'hat': '\u0302', # ̂ COMBINING CIRCUMFLEX ACCENT
|
||||
'mathring': '\u030a', # ̊ COMBINING RING ABOVE
|
||||
'not': '\u0338', # ̸ COMBINING LONG SOLIDUS OVERLAY
|
||||
'overleftrightarrow': '\u20e1', # ⃡ COMBINING LEFT RIGHT ARROW ABOVE
|
||||
'overline': '\u0305', # ̅ COMBINING OVERLINE
|
||||
'tilde': '\u0303', # ̃ COMBINING TILDE
|
||||
'underbar': '\u0331', # ̱ COMBINING MACRON BELOW
|
||||
'underleftarrow': '\u20ee', # ⃮ COMBINING LEFT ARROW BELOW
|
||||
'underline': '\u0332', # ̲ COMBINING LOW LINE
|
||||
'underrightarrow': '\u20ef', # ⃯ COMBINING RIGHT ARROW BELOW
|
||||
'vec': '\u20d7', # ⃗ COMBINING RIGHT ARROW ABOVE
|
||||
}
|
||||
|
||||
mathalpha = {
|
||||
'Bbbk': '\U0001d55c', # 𝕜 MATHEMATICAL DOUBLE-STRUCK SMALL K
|
||||
'Delta': '\u0394', # Δ GREEK CAPITAL LETTER DELTA
|
||||
'Gamma': '\u0393', # Γ GREEK CAPITAL LETTER GAMMA
|
||||
'Im': '\u2111', # ℑ BLACK-LETTER CAPITAL I
|
||||
'Lambda': '\u039b', # Λ GREEK CAPITAL LETTER LAMDA
|
||||
'Omega': '\u03a9', # Ω GREEK CAPITAL LETTER OMEGA
|
||||
'Phi': '\u03a6', # Φ GREEK CAPITAL LETTER PHI
|
||||
'Pi': '\u03a0', # Π GREEK CAPITAL LETTER PI
|
||||
'Psi': '\u03a8', # Ψ GREEK CAPITAL LETTER PSI
|
||||
'Re': '\u211c', # ℜ BLACK-LETTER CAPITAL R
|
||||
'Sigma': '\u03a3', # Σ GREEK CAPITAL LETTER SIGMA
|
||||
'Theta': '\u0398', # Θ GREEK CAPITAL LETTER THETA
|
||||
'Upsilon': '\u03a5', # Υ GREEK CAPITAL LETTER UPSILON
|
||||
'Xi': '\u039e', # Ξ GREEK CAPITAL LETTER XI
|
||||
'aleph': '\u2135', # ℵ ALEF SYMBOL
|
||||
'alpha': '\u03b1', # α GREEK SMALL LETTER ALPHA
|
||||
'beta': '\u03b2', # β GREEK SMALL LETTER BETA
|
||||
'beth': '\u2136', # ℶ BET SYMBOL
|
||||
'chi': '\u03c7', # χ GREEK SMALL LETTER CHI
|
||||
'daleth': '\u2138', # ℸ DALET SYMBOL
|
||||
'delta': '\u03b4', # δ GREEK SMALL LETTER DELTA
|
||||
'digamma': '\u03dd', # ϝ GREEK SMALL LETTER DIGAMMA
|
||||
'ell': '\u2113', # ℓ SCRIPT SMALL L
|
||||
'epsilon': '\u03f5', # ϵ GREEK LUNATE EPSILON SYMBOL
|
||||
'eta': '\u03b7', # η GREEK SMALL LETTER ETA
|
||||
'eth': '\xf0', # ð LATIN SMALL LETTER ETH
|
||||
'gamma': '\u03b3', # γ GREEK SMALL LETTER GAMMA
|
||||
'gimel': '\u2137', # ℷ GIMEL SYMBOL
|
||||
'imath': '\u0131', # ı LATIN SMALL LETTER DOTLESS I
|
||||
'iota': '\u03b9', # ι GREEK SMALL LETTER IOTA
|
||||
'jmath': '\u0237', # ȷ LATIN SMALL LETTER DOTLESS J
|
||||
'kappa': '\u03ba', # κ GREEK SMALL LETTER KAPPA
|
||||
'lambda': '\u03bb', # λ GREEK SMALL LETTER LAMDA
|
||||
'mu': '\u03bc', # μ GREEK SMALL LETTER MU
|
||||
'nu': '\u03bd', # ν GREEK SMALL LETTER NU
|
||||
'omega': '\u03c9', # ω GREEK SMALL LETTER OMEGA
|
||||
'phi': '\u03d5', # ϕ GREEK PHI SYMBOL
|
||||
'pi': '\u03c0', # π GREEK SMALL LETTER PI
|
||||
'psi': '\u03c8', # ψ GREEK SMALL LETTER PSI
|
||||
'rho': '\u03c1', # ρ GREEK SMALL LETTER RHO
|
||||
'sigma': '\u03c3', # σ GREEK SMALL LETTER SIGMA
|
||||
'tau': '\u03c4', # τ GREEK SMALL LETTER TAU
|
||||
'theta': '\u03b8', # θ GREEK SMALL LETTER THETA
|
||||
'upsilon': '\u03c5', # υ GREEK SMALL LETTER UPSILON
|
||||
'varDelta': '\U0001d6e5', # 𝛥 MATHEMATICAL ITALIC CAPITAL DELTA
|
||||
'varGamma': '\U0001d6e4', # 𝛤 MATHEMATICAL ITALIC CAPITAL GAMMA
|
||||
'varLambda': '\U0001d6ec', # 𝛬 MATHEMATICAL ITALIC CAPITAL LAMDA
|
||||
'varOmega': '\U0001d6fa', # 𝛺 MATHEMATICAL ITALIC CAPITAL OMEGA
|
||||
'varPhi': '\U0001d6f7', # 𝛷 MATHEMATICAL ITALIC CAPITAL PHI
|
||||
'varPi': '\U0001d6f1', # 𝛱 MATHEMATICAL ITALIC CAPITAL PI
|
||||
'varPsi': '\U0001d6f9', # 𝛹 MATHEMATICAL ITALIC CAPITAL PSI
|
||||
'varSigma': '\U0001d6f4', # 𝛴 MATHEMATICAL ITALIC CAPITAL SIGMA
|
||||
'varTheta': '\U0001d6e9', # 𝛩 MATHEMATICAL ITALIC CAPITAL THETA
|
||||
'varUpsilon': '\U0001d6f6', # 𝛶 MATHEMATICAL ITALIC CAPITAL UPSILON
|
||||
'varXi': '\U0001d6ef', # 𝛯 MATHEMATICAL ITALIC CAPITAL XI
|
||||
'varepsilon': '\u03b5', # ε GREEK SMALL LETTER EPSILON
|
||||
'varkappa': '\u03f0', # ϰ GREEK KAPPA SYMBOL
|
||||
'varphi': '\u03c6', # φ GREEK SMALL LETTER PHI
|
||||
'varpi': '\u03d6', # ϖ GREEK PI SYMBOL
|
||||
'varrho': '\u03f1', # ϱ GREEK RHO SYMBOL
|
||||
'varsigma': '\u03c2', # ς GREEK SMALL LETTER FINAL SIGMA
|
||||
'vartheta': '\u03d1', # ϑ GREEK THETA SYMBOL
|
||||
'wp': '\u2118', # ℘ SCRIPT CAPITAL P
|
||||
'xi': '\u03be', # ξ GREEK SMALL LETTER XI
|
||||
'zeta': '\u03b6', # ζ GREEK SMALL LETTER ZETA
|
||||
}
|
||||
|
||||
mathbin = {
|
||||
'Cap': '\u22d2', # ⋒ DOUBLE INTERSECTION
|
||||
'Circle': '\u25cb', # ○ WHITE CIRCLE
|
||||
'Cup': '\u22d3', # ⋓ DOUBLE UNION
|
||||
'LHD': '\u25c0', # ◀ BLACK LEFT-POINTING TRIANGLE
|
||||
'RHD': '\u25b6', # ▶ BLACK RIGHT-POINTING TRIANGLE
|
||||
'amalg': '\u2a3f', # ⨿ AMALGAMATION OR COPRODUCT
|
||||
'ast': '\u2217', # ∗ ASTERISK OPERATOR
|
||||
'barwedge': '\u22bc', # ⊼ NAND
|
||||
'bigcirc': '\u25ef', # ◯ LARGE CIRCLE
|
||||
'bigtriangledown': '\u25bd', # ▽ WHITE DOWN-POINTING TRIANGLE
|
||||
'bigtriangleup': '\u25b3', # △ WHITE UP-POINTING TRIANGLE
|
||||
'bindnasrepma': '\u214b', # ⅋ TURNED AMPERSAND
|
||||
'blacklozenge': '\u29eb', # ⧫ BLACK LOZENGE
|
||||
'boxast': '\u29c6', # ⧆ SQUARED ASTERISK
|
||||
'boxbar': '\u25eb', # ◫ WHITE SQUARE WITH VERTICAL BISECTING LINE
|
||||
'boxbox': '\u29c8', # ⧈ SQUARED SQUARE
|
||||
'boxbslash': '\u29c5', # ⧅ SQUARED FALLING DIAGONAL SLASH
|
||||
'boxcircle': '\u29c7', # ⧇ SQUARED SMALL CIRCLE
|
||||
'boxdot': '\u22a1', # ⊡ SQUARED DOT OPERATOR
|
||||
'boxminus': '\u229f', # ⊟ SQUARED MINUS
|
||||
'boxplus': '\u229e', # ⊞ SQUARED PLUS
|
||||
'boxslash': '\u29c4', # ⧄ SQUARED RISING DIAGONAL SLASH
|
||||
'boxtimes': '\u22a0', # ⊠ SQUARED TIMES
|
||||
'bullet': '\u2022', # • BULLET
|
||||
'cap': '\u2229', # ∩ INTERSECTION
|
||||
'cdot': '\u22c5', # ⋅ DOT OPERATOR
|
||||
'circ': '\u2218', # ∘ RING OPERATOR
|
||||
'circledast': '\u229b', # ⊛ CIRCLED ASTERISK OPERATOR
|
||||
'circledbslash': '\u29b8', # ⦸ CIRCLED REVERSE SOLIDUS
|
||||
'circledcirc': '\u229a', # ⊚ CIRCLED RING OPERATOR
|
||||
'circleddash': '\u229d', # ⊝ CIRCLED DASH
|
||||
'circledgtr': '\u29c1', # ⧁ CIRCLED GREATER-THAN
|
||||
'circledless': '\u29c0', # ⧀ CIRCLED LESS-THAN
|
||||
'cup': '\u222a', # ∪ UNION
|
||||
'curlyvee': '\u22ce', # ⋎ CURLY LOGICAL OR
|
||||
'curlywedge': '\u22cf', # ⋏ CURLY LOGICAL AND
|
||||
'dagger': '\u2020', # † DAGGER
|
||||
'ddagger': '\u2021', # ‡ DOUBLE DAGGER
|
||||
'diamond': '\u22c4', # ⋄ DIAMOND OPERATOR
|
||||
'div': '\xf7', # ÷ DIVISION SIGN
|
||||
'divideontimes': '\u22c7', # ⋇ DIVISION TIMES
|
||||
'dotplus': '\u2214', # ∔ DOT PLUS
|
||||
'doublebarwedge': '\u2a5e', # ⩞ LOGICAL AND WITH DOUBLE OVERBAR
|
||||
'gtrdot': '\u22d7', # ⋗ GREATER-THAN WITH DOT
|
||||
'intercal': '\u22ba', # ⊺ INTERCALATE
|
||||
'interleave': '\u2af4', # ⫴ TRIPLE VERTICAL BAR BINARY RELATION
|
||||
'invamp': '\u214b', # ⅋ TURNED AMPERSAND
|
||||
'land': '\u2227', # ∧ LOGICAL AND
|
||||
'leftthreetimes': '\u22cb', # ⋋ LEFT SEMIDIRECT PRODUCT
|
||||
'lessdot': '\u22d6', # ⋖ LESS-THAN WITH DOT
|
||||
'lor': '\u2228', # ∨ LOGICAL OR
|
||||
'ltimes': '\u22c9', # ⋉ LEFT NORMAL FACTOR SEMIDIRECT PRODUCT
|
||||
'mp': '\u2213', # ∓ MINUS-OR-PLUS SIGN
|
||||
'odot': '\u2299', # ⊙ CIRCLED DOT OPERATOR
|
||||
'ominus': '\u2296', # ⊖ CIRCLED MINUS
|
||||
'oplus': '\u2295', # ⊕ CIRCLED PLUS
|
||||
'oslash': '\u2298', # ⊘ CIRCLED DIVISION SLASH
|
||||
'otimes': '\u2297', # ⊗ CIRCLED TIMES
|
||||
'pm': '\xb1', # ± PLUS-MINUS SIGN
|
||||
'rightthreetimes': '\u22cc', # ⋌ RIGHT SEMIDIRECT PRODUCT
|
||||
'rtimes': '\u22ca', # ⋊ RIGHT NORMAL FACTOR SEMIDIRECT PRODUCT
|
||||
'setminus': '\u29f5', # ⧵ REVERSE SOLIDUS OPERATOR
|
||||
'slash': '\u2215', # ∕ DIVISION SLASH
|
||||
'smallsetminus': '\u2216', # ∖ SET MINUS
|
||||
'smalltriangledown': '\u25bf', # ▿ WHITE DOWN-POINTING SMALL TRIANGLE
|
||||
'smalltriangleleft': '\u25c3', # ◃ WHITE LEFT-POINTING SMALL TRIANGLE
|
||||
'smalltriangleright': '\u25b9', # ▹ WHITE RIGHT-POINTING SMALL TRIANGLE
|
||||
'sqcap': '\u2293', # ⊓ SQUARE CAP
|
||||
'sqcup': '\u2294', # ⊔ SQUARE CUP
|
||||
'sslash': '\u2afd', # ⫽ DOUBLE SOLIDUS OPERATOR
|
||||
'star': '\u22c6', # ⋆ STAR OPERATOR
|
||||
'talloblong': '\u2afe', # ⫾ WHITE VERTICAL BAR
|
||||
'times': '\xd7', # × MULTIPLICATION SIGN
|
||||
'triangleleft': '\u25c3', # ◃ WHITE LEFT-POINTING SMALL TRIANGLE
|
||||
'triangleright': '\u25b9', # ▹ WHITE RIGHT-POINTING SMALL TRIANGLE
|
||||
'uplus': '\u228e', # ⊎ MULTISET UNION
|
||||
'vee': '\u2228', # ∨ LOGICAL OR
|
||||
'veebar': '\u22bb', # ⊻ XOR
|
||||
'wedge': '\u2227', # ∧ LOGICAL AND
|
||||
'wr': '\u2240', # ≀ WREATH PRODUCT
|
||||
}
|
||||
|
||||
mathclose = {
|
||||
'Rbag': '\u27c6', # ⟆ RIGHT S-SHAPED BAG DELIMITER
|
||||
'lrcorner': '\u231f', # ⌟ BOTTOM RIGHT CORNER
|
||||
'rangle': '\u27e9', # ⟩ MATHEMATICAL RIGHT ANGLE BRACKET
|
||||
'rbag': '\u27c6', # ⟆ RIGHT S-SHAPED BAG DELIMITER
|
||||
'rbrace': '}', # } RIGHT CURLY BRACKET
|
||||
'rbrack': ']', # ] RIGHT SQUARE BRACKET
|
||||
'rceil': '\u2309', # ⌉ RIGHT CEILING
|
||||
'rfloor': '\u230b', # ⌋ RIGHT FLOOR
|
||||
'rgroup': '\u27ef', # ⟯ MATHEMATICAL RIGHT FLATTENED PARENTHESIS
|
||||
'rrbracket': '\u27e7', # ⟧ MATHEMATICAL RIGHT WHITE SQUARE BRACKET
|
||||
'rrparenthesis': '\u2988', # ⦈ Z NOTATION RIGHT IMAGE BRACKET
|
||||
'urcorner': '\u231d', # ⌝ TOP RIGHT CORNER
|
||||
'}': '}', # } RIGHT CURLY BRACKET
|
||||
}
|
||||
|
||||
mathfence = {
|
||||
'Vert': '\u2016', # ‖ DOUBLE VERTICAL LINE
|
||||
'vert': '|', # | VERTICAL LINE
|
||||
'|': '\u2016', # ‖ DOUBLE VERTICAL LINE
|
||||
}
|
||||
|
||||
mathop = {
|
||||
'bigcap': '\u22c2', # ⋂ N-ARY INTERSECTION
|
||||
'bigcup': '\u22c3', # ⋃ N-ARY UNION
|
||||
'biginterleave': '\u2afc', # ⫼ LARGE TRIPLE VERTICAL BAR OPERATOR
|
||||
'bigodot': '\u2a00', # ⨀ N-ARY CIRCLED DOT OPERATOR
|
||||
'bigoplus': '\u2a01', # ⨁ N-ARY CIRCLED PLUS OPERATOR
|
||||
'bigotimes': '\u2a02', # ⨂ N-ARY CIRCLED TIMES OPERATOR
|
||||
'bigsqcap': '\u2a05', # ⨅ N-ARY SQUARE INTERSECTION OPERATOR
|
||||
'bigsqcup': '\u2a06', # ⨆ N-ARY SQUARE UNION OPERATOR
|
||||
'biguplus': '\u2a04', # ⨄ N-ARY UNION OPERATOR WITH PLUS
|
||||
'bigvee': '\u22c1', # ⋁ N-ARY LOGICAL OR
|
||||
'bigwedge': '\u22c0', # ⋀ N-ARY LOGICAL AND
|
||||
'coprod': '\u2210', # ∐ N-ARY COPRODUCT
|
||||
'fatsemi': '\u2a1f', # ⨟ Z NOTATION SCHEMA COMPOSITION
|
||||
'fint': '\u2a0f', # ⨏ INTEGRAL AVERAGE WITH SLASH
|
||||
'iiiint': '\u2a0c', # ⨌ QUADRUPLE INTEGRAL OPERATOR
|
||||
'iiint': '\u222d', # ∭ TRIPLE INTEGRAL
|
||||
'iint': '\u222c', # ∬ DOUBLE INTEGRAL
|
||||
'int': '\u222b', # ∫ INTEGRAL
|
||||
'intop': '\u222b', # ∫ INTEGRAL
|
||||
'oiiint': '\u2230', # ∰ VOLUME INTEGRAL
|
||||
'oiint': '\u222f', # ∯ SURFACE INTEGRAL
|
||||
'oint': '\u222e', # ∮ CONTOUR INTEGRAL
|
||||
'ointctrclockwise': '\u2233', # ∳ ANTICLOCKWISE CONTOUR INTEGRAL
|
||||
'ointop': '\u222e', # ∮ CONTOUR INTEGRAL
|
||||
'prod': '\u220f', # ∏ N-ARY PRODUCT
|
||||
'sqint': '\u2a16', # ⨖ QUATERNION INTEGRAL OPERATOR
|
||||
'sum': '\u2211', # ∑ N-ARY SUMMATION
|
||||
'varointclockwise': '\u2232', # ∲ CLOCKWISE CONTOUR INTEGRAL
|
||||
'varprod': '\u2a09', # ⨉ N-ARY TIMES OPERATOR
|
||||
}
|
||||
|
||||
mathopen = {
|
||||
'Lbag': '\u27c5', # ⟅ LEFT S-SHAPED BAG DELIMITER
|
||||
'langle': '\u27e8', # ⟨ MATHEMATICAL LEFT ANGLE BRACKET
|
||||
'lbag': '\u27c5', # ⟅ LEFT S-SHAPED BAG DELIMITER
|
||||
'lbrace': '{', # { LEFT CURLY BRACKET
|
||||
'lbrack': '[', # [ LEFT SQUARE BRACKET
|
||||
'lceil': '\u2308', # ⌈ LEFT CEILING
|
||||
'lfloor': '\u230a', # ⌊ LEFT FLOOR
|
||||
'lgroup': '\u27ee', # ⟮ MATHEMATICAL LEFT FLATTENED PARENTHESIS
|
||||
'llbracket': '\u27e6', # ⟦ MATHEMATICAL LEFT WHITE SQUARE BRACKET
|
||||
'llcorner': '\u231e', # ⌞ BOTTOM LEFT CORNER
|
||||
'llparenthesis': '\u2987', # ⦇ Z NOTATION LEFT IMAGE BRACKET
|
||||
'ulcorner': '\u231c', # ⌜ TOP LEFT CORNER
|
||||
'{': '{', # { LEFT CURLY BRACKET
|
||||
}
|
||||
|
||||
mathord = {
|
||||
'#': '#', # # NUMBER SIGN
|
||||
'$': '$', # $ DOLLAR SIGN
|
||||
'%': '%', # % PERCENT SIGN
|
||||
'&': '&', # & AMPERSAND
|
||||
'AC': '\u223f', # ∿ SINE WAVE
|
||||
'APLcomment': '\u235d', # ⍝ APL FUNCTIONAL SYMBOL UP SHOE JOT
|
||||
'APLdownarrowbox': '\u2357', # ⍗ APL FUNCTIONAL SYMBOL QUAD DOWNWARDS ARROW
|
||||
'APLinput': '\u235e', # ⍞ APL FUNCTIONAL SYMBOL QUOTE QUAD
|
||||
'APLinv': '\u2339', # ⌹ APL FUNCTIONAL SYMBOL QUAD DIVIDE
|
||||
'APLleftarrowbox': '\u2347', # ⍇ APL FUNCTIONAL SYMBOL QUAD LEFTWARDS ARROW
|
||||
'APLlog': '\u235f', # ⍟ APL FUNCTIONAL SYMBOL CIRCLE STAR
|
||||
'APLrightarrowbox': '\u2348', # ⍈ APL FUNCTIONAL SYMBOL QUAD RIGHTWARDS ARROW
|
||||
'APLuparrowbox': '\u2350', # ⍐ APL FUNCTIONAL SYMBOL QUAD UPWARDS ARROW
|
||||
'Aries': '\u2648', # ♈ ARIES
|
||||
'Box': '\u2b1c', # ⬜ WHITE LARGE SQUARE
|
||||
'CIRCLE': '\u25cf', # ● BLACK CIRCLE
|
||||
'CheckedBox': '\u2611', # ☑ BALLOT BOX WITH CHECK
|
||||
'Diamond': '\u25c7', # ◇ WHITE DIAMOND
|
||||
'Diamondblack': '\u25c6', # ◆ BLACK DIAMOND
|
||||
'Diamonddot': '\u27d0', # ⟐ WHITE DIAMOND WITH CENTRED DOT
|
||||
'Finv': '\u2132', # Ⅎ TURNED CAPITAL F
|
||||
'Game': '\u2141', # ⅁ TURNED SANS-SERIF CAPITAL G
|
||||
'Gemini': '\u264a', # ♊ GEMINI
|
||||
'Jupiter': '\u2643', # ♃ JUPITER
|
||||
'LEFTCIRCLE': '\u25d6', # ◖ LEFT HALF BLACK CIRCLE
|
||||
'LEFTcircle': '\u25d0', # ◐ CIRCLE WITH LEFT HALF BLACK
|
||||
'Leo': '\u264c', # ♌ LEO
|
||||
'Libra': '\u264e', # ♎ LIBRA
|
||||
'Mars': '\u2642', # ♂ MALE SIGN
|
||||
'Mercury': '\u263f', # ☿ MERCURY
|
||||
'Neptune': '\u2646', # ♆ NEPTUNE
|
||||
'P': '\xb6', # ¶ PILCROW SIGN
|
||||
'Pluto': '\u2647', # ♇ PLUTO
|
||||
'RIGHTCIRCLE': '\u25d7', # ◗ RIGHT HALF BLACK CIRCLE
|
||||
'RIGHTcircle': '\u25d1', # ◑ CIRCLE WITH RIGHT HALF BLACK
|
||||
'S': '\xa7', # § SECTION SIGN
|
||||
'Saturn': '\u2644', # ♄ SATURN
|
||||
'Scorpio': '\u264f', # ♏ SCORPIUS
|
||||
'Square': '\u2610', # ☐ BALLOT BOX
|
||||
'Sun': '\u2609', # ☉ SUN
|
||||
'Taurus': '\u2649', # ♉ TAURUS
|
||||
'Uranus': '\u2645', # ♅ URANUS
|
||||
'Venus': '\u2640', # ♀ FEMALE SIGN
|
||||
'XBox': '\u2612', # ☒ BALLOT BOX WITH X
|
||||
'Yup': '\u2144', # ⅄ TURNED SANS-SERIF CAPITAL Y
|
||||
'_': '_', # _ LOW LINE
|
||||
'angle': '\u2220', # ∠ ANGLE
|
||||
'aquarius': '\u2652', # ♒ AQUARIUS
|
||||
'aries': '\u2648', # ♈ ARIES
|
||||
'arrowvert': '\u23d0', # ⏐ VERTICAL LINE EXTENSION
|
||||
'backprime': '\u2035', # ‵ REVERSED PRIME
|
||||
'backslash': '\\', # \ REVERSE SOLIDUS
|
||||
'bigstar': '\u2605', # ★ BLACK STAR
|
||||
'blacksmiley': '\u263b', # ☻ BLACK SMILING FACE
|
||||
'blacksquare': '\u25fc', # ◼ BLACK MEDIUM SQUARE
|
||||
'blacktriangle': '\u25b4', # ▴ BLACK UP-POINTING SMALL TRIANGLE
|
||||
'blacktriangledown': '\u25be', # ▾ BLACK DOWN-POINTING SMALL TRIANGLE
|
||||
'blacktriangleup': '\u25b4', # ▴ BLACK UP-POINTING SMALL TRIANGLE
|
||||
'bot': '\u22a5', # ⊥ UP TACK
|
||||
'boy': '\u2642', # ♂ MALE SIGN
|
||||
'bracevert': '\u23aa', # ⎪ CURLY BRACKET EXTENSION
|
||||
'cancer': '\u264b', # ♋ CANCER
|
||||
'capricornus': '\u2651', # ♑ CAPRICORN
|
||||
'cdots': '\u22ef', # ⋯ MIDLINE HORIZONTAL ELLIPSIS
|
||||
'cent': '\xa2', # ¢ CENT SIGN
|
||||
'checkmark': '\u2713', # ✓ CHECK MARK
|
||||
'circledR': '\u24c7', # Ⓡ CIRCLED LATIN CAPITAL LETTER R
|
||||
'circledS': '\u24c8', # Ⓢ CIRCLED LATIN CAPITAL LETTER S
|
||||
'clubsuit': '\u2663', # ♣ BLACK CLUB SUIT
|
||||
'complement': '\u2201', # ∁ COMPLEMENT
|
||||
'diagdown': '\u27cd', # ⟍ MATHEMATICAL FALLING DIAGONAL
|
||||
'diagup': '\u27cb', # ⟋ MATHEMATICAL RISING DIAGONAL
|
||||
'diameter': '\u2300', # ⌀ DIAMETER SIGN
|
||||
'diamondsuit': '\u2662', # ♢ WHITE DIAMOND SUIT
|
||||
'earth': '\u2641', # ♁ EARTH
|
||||
'emptyset': '\u2205', # ∅ EMPTY SET
|
||||
'exists': '\u2203', # ∃ THERE EXISTS
|
||||
'female': '\u2640', # ♀ FEMALE SIGN
|
||||
'flat': '\u266d', # ♭ MUSIC FLAT SIGN
|
||||
'forall': '\u2200', # ∀ FOR ALL
|
||||
'fourth': '\u2057', # ⁗ QUADRUPLE PRIME
|
||||
'frownie': '\u2639', # ☹ WHITE FROWNING FACE
|
||||
'gemini': '\u264a', # ♊ GEMINI
|
||||
'girl': '\u2640', # ♀ FEMALE SIGN
|
||||
'heartsuit': '\u2661', # ♡ WHITE HEART SUIT
|
||||
'hslash': '\u210f', # ℏ PLANCK CONSTANT OVER TWO PI
|
||||
'infty': '\u221e', # ∞ INFINITY
|
||||
'invdiameter': '\u2349', # ⍉ APL FUNCTIONAL SYMBOL CIRCLE BACKSLASH
|
||||
'invneg': '\u2310', # ⌐ REVERSED NOT SIGN
|
||||
'jupiter': '\u2643', # ♃ JUPITER
|
||||
'ldots': '\u2026', # … HORIZONTAL ELLIPSIS
|
||||
'leftmoon': '\u263e', # ☾ LAST QUARTER MOON
|
||||
'leo': '\u264c', # ♌ LEO
|
||||
'libra': '\u264e', # ♎ LIBRA
|
||||
'lmoustache': '\u23b0', # ⎰ UPPER LEFT OR LOWER RIGHT CURLY BRACKET SECTION
|
||||
'lnot': '\xac', # ¬ NOT SIGN
|
||||
'lozenge': '\u25ca', # ◊ LOZENGE
|
||||
'male': '\u2642', # ♂ MALE SIGN
|
||||
'maltese': '\u2720', # ✠ MALTESE CROSS
|
||||
'mathcent': '\xa2', # ¢ CENT SIGN
|
||||
'mathdollar': '$', # $ DOLLAR SIGN
|
||||
'mathsterling': '\xa3', # £ POUND SIGN
|
||||
'measuredangle': '\u2221', # ∡ MEASURED ANGLE
|
||||
'medbullet': '\u26ab', # ⚫ MEDIUM BLACK CIRCLE
|
||||
'medcirc': '\u26aa', # ⚪ MEDIUM WHITE CIRCLE
|
||||
'mercury': '\u263f', # ☿ MERCURY
|
||||
'mho': '\u2127', # ℧ INVERTED OHM SIGN
|
||||
'nabla': '\u2207', # ∇ NABLA
|
||||
'natural': '\u266e', # ♮ MUSIC NATURAL SIGN
|
||||
'neg': '\xac', # ¬ NOT SIGN
|
||||
'neptune': '\u2646', # ♆ NEPTUNE
|
||||
'nexists': '\u2204', # ∄ THERE DOES NOT EXIST
|
||||
'notbackslash': '\u2340', # ⍀ APL FUNCTIONAL SYMBOL BACKSLASH BAR
|
||||
'partial': '\u2202', # ∂ PARTIAL DIFFERENTIAL
|
||||
'pisces': '\u2653', # ♓ PISCES
|
||||
'pluto': '\u2647', # ♇ PLUTO
|
||||
'pounds': '\xa3', # £ POUND SIGN
|
||||
'prime': '\u2032', # ′ PRIME
|
||||
'quarternote': '\u2669', # ♩ QUARTER NOTE
|
||||
'rightmoon': '\u263d', # ☽ FIRST QUARTER MOON
|
||||
'rmoustache': '\u23b1', # ⎱ UPPER RIGHT OR LOWER LEFT CURLY BRACKET SECTION
|
||||
'sagittarius': '\u2650', # ♐ SAGITTARIUS
|
||||
'saturn': '\u2644', # ♄ SATURN
|
||||
'scorpio': '\u264f', # ♏ SCORPIUS
|
||||
'second': '\u2033', # ″ DOUBLE PRIME
|
||||
'sharp': '\u266f', # ♯ MUSIC SHARP SIGN
|
||||
'smiley': '\u263a', # ☺ WHITE SMILING FACE
|
||||
'spadesuit': '\u2660', # ♠ BLACK SPADE SUIT
|
||||
'spddot': '\xa8', # ¨ DIAERESIS
|
||||
'sphat': '^', # ^ CIRCUMFLEX ACCENT
|
||||
'sphericalangle': '\u2222', # ∢ SPHERICAL ANGLE
|
||||
'sptilde': '~', # ~ TILDE
|
||||
'square': '\u25fb', # ◻ WHITE MEDIUM SQUARE
|
||||
'sun': '\u263c', # ☼ WHITE SUN WITH RAYS
|
||||
'surd': '\u221a', # √ SQUARE ROOT
|
||||
'taurus': '\u2649', # ♉ TAURUS
|
||||
'third': '\u2034', # ‴ TRIPLE PRIME
|
||||
'top': '\u22a4', # ⊤ DOWN TACK
|
||||
'twonotes': '\u266b', # ♫ BEAMED EIGHTH NOTES
|
||||
'uranus': '\u2645', # ♅ URANUS
|
||||
'varEarth': '\u2641', # ♁ EARTH
|
||||
'varclubsuit': '\u2667', # ♧ WHITE CLUB SUIT
|
||||
'vardiamondsuit': '\u2666', # ♦ BLACK DIAMOND SUIT
|
||||
'varheartsuit': '\u2665', # ♥ BLACK HEART SUIT
|
||||
'varspadesuit': '\u2664', # ♤ WHITE SPADE SUIT
|
||||
'virgo': '\u264d', # ♍ VIRGO
|
||||
'wasylozenge': '\u2311', # ⌑ SQUARE LOZENGE
|
||||
'yen': '\xa5', # ¥ YEN SIGN
|
||||
}
|
||||
|
||||
mathover = {
|
||||
'overbrace': '\u23de', # ⏞ TOP CURLY BRACKET
|
||||
'wideparen': '\u23dc', # ⏜ TOP PARENTHESIS
|
||||
}
|
||||
|
||||
mathpunct = {
|
||||
'ddots': '\u22f1', # ⋱ DOWN RIGHT DIAGONAL ELLIPSIS
|
||||
'vdots': '\u22ee', # ⋮ VERTICAL ELLIPSIS
|
||||
}
|
||||
|
||||
mathradical = {
|
||||
'sqrt[3]': '\u221b', # ∛ CUBE ROOT
|
||||
'sqrt[4]': '\u221c', # ∜ FOURTH ROOT
|
||||
}
|
||||
|
||||
mathrel = {
|
||||
'Bot': '\u2aeb', # ⫫ DOUBLE UP TACK
|
||||
'Bumpeq': '\u224e', # ≎ GEOMETRICALLY EQUIVALENT TO
|
||||
'Coloneqq': '\u2a74', # ⩴ DOUBLE COLON EQUAL
|
||||
'Doteq': '\u2251', # ≑ GEOMETRICALLY EQUAL TO
|
||||
'Downarrow': '\u21d3', # ⇓ DOWNWARDS DOUBLE ARROW
|
||||
'Leftarrow': '\u21d0', # ⇐ LEFTWARDS DOUBLE ARROW
|
||||
'Leftrightarrow': '\u21d4', # ⇔ LEFT RIGHT DOUBLE ARROW
|
||||
'Lleftarrow': '\u21da', # ⇚ LEFTWARDS TRIPLE ARROW
|
||||
'Longleftarrow': '\u27f8', # ⟸ LONG LEFTWARDS DOUBLE ARROW
|
||||
'Longleftrightarrow': '\u27fa', # ⟺ LONG LEFT RIGHT DOUBLE ARROW
|
||||
'Longmapsfrom': '\u27fd', # ⟽ LONG LEFTWARDS DOUBLE ARROW FROM BAR
|
||||
'Longmapsto': '\u27fe', # ⟾ LONG RIGHTWARDS DOUBLE ARROW FROM BAR
|
||||
'Longrightarrow': '\u27f9', # ⟹ LONG RIGHTWARDS DOUBLE ARROW
|
||||
'Lsh': '\u21b0', # ↰ UPWARDS ARROW WITH TIP LEFTWARDS
|
||||
'Mapsfrom': '\u2906', # ⤆ LEFTWARDS DOUBLE ARROW FROM BAR
|
||||
'Mapsto': '\u2907', # ⤇ RIGHTWARDS DOUBLE ARROW FROM BAR
|
||||
'Nearrow': '\u21d7', # ⇗ NORTH EAST DOUBLE ARROW
|
||||
'Nwarrow': '\u21d6', # ⇖ NORTH WEST DOUBLE ARROW
|
||||
'Perp': '\u2aeb', # ⫫ DOUBLE UP TACK
|
||||
'Rightarrow': '\u21d2', # ⇒ RIGHTWARDS DOUBLE ARROW
|
||||
'Rrightarrow': '\u21db', # ⇛ RIGHTWARDS TRIPLE ARROW
|
||||
'Rsh': '\u21b1', # ↱ UPWARDS ARROW WITH TIP RIGHTWARDS
|
||||
'Searrow': '\u21d8', # ⇘ SOUTH EAST DOUBLE ARROW
|
||||
'Subset': '\u22d0', # ⋐ DOUBLE SUBSET
|
||||
'Supset': '\u22d1', # ⋑ DOUBLE SUPERSET
|
||||
'Swarrow': '\u21d9', # ⇙ SOUTH WEST DOUBLE ARROW
|
||||
'Top': '\u2aea', # ⫪ DOUBLE DOWN TACK
|
||||
'Uparrow': '\u21d1', # ⇑ UPWARDS DOUBLE ARROW
|
||||
'Updownarrow': '\u21d5', # ⇕ UP DOWN DOUBLE ARROW
|
||||
'VDash': '\u22ab', # ⊫ DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE
|
||||
'Vdash': '\u22a9', # ⊩ FORCES
|
||||
'Vvdash': '\u22aa', # ⊪ TRIPLE VERTICAL BAR RIGHT TURNSTILE
|
||||
'apprge': '\u2273', # ≳ GREATER-THAN OR EQUIVALENT TO
|
||||
'apprle': '\u2272', # ≲ LESS-THAN OR EQUIVALENT TO
|
||||
'approx': '\u2248', # ≈ ALMOST EQUAL TO
|
||||
'approxeq': '\u224a', # ≊ ALMOST EQUAL OR EQUAL TO
|
||||
'asymp': '\u224d', # ≍ EQUIVALENT TO
|
||||
'backepsilon': '\u220d', # ∍ SMALL CONTAINS AS MEMBER
|
||||
'backsim': '\u223d', # ∽ REVERSED TILDE
|
||||
'backsimeq': '\u22cd', # ⋍ REVERSED TILDE EQUALS
|
||||
'barin': '\u22f6', # ⋶ ELEMENT OF WITH OVERBAR
|
||||
'barleftharpoon': '\u296b', # ⥫ LEFTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH
|
||||
'barrightharpoon': '\u296d', # ⥭ RIGHTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH
|
||||
'because': '\u2235', # ∵ BECAUSE
|
||||
'between': '\u226c', # ≬ BETWEEN
|
||||
'blacktriangleleft': '\u25c2', # ◂ BLACK LEFT-POINTING SMALL TRIANGLE
|
||||
'blacktriangleright': '\u25b8', # ▸ BLACK RIGHT-POINTING SMALL TRIANGLE
|
||||
'bowtie': '\u22c8', # ⋈ BOWTIE
|
||||
'bumpeq': '\u224f', # ≏ DIFFERENCE BETWEEN
|
||||
'circeq': '\u2257', # ≗ RING EQUAL TO
|
||||
'circlearrowleft': '\u21ba', # ↺ ANTICLOCKWISE OPEN CIRCLE ARROW
|
||||
'circlearrowright': '\u21bb', # ↻ CLOCKWISE OPEN CIRCLE ARROW
|
||||
'coloneq': '\u2254', # ≔ COLON EQUALS
|
||||
'coloneqq': '\u2254', # ≔ COLON EQUALS
|
||||
'cong': '\u2245', # ≅ APPROXIMATELY EQUAL TO
|
||||
'corresponds': '\u2259', # ≙ ESTIMATES
|
||||
'curlyeqprec': '\u22de', # ⋞ EQUAL TO OR PRECEDES
|
||||
'curlyeqsucc': '\u22df', # ⋟ EQUAL TO OR SUCCEEDS
|
||||
'curvearrowleft': '\u21b6', # ↶ ANTICLOCKWISE TOP SEMICIRCLE ARROW
|
||||
'curvearrowright': '\u21b7', # ↷ CLOCKWISE TOP SEMICIRCLE ARROW
|
||||
'dasharrow': '\u21e2', # ⇢ RIGHTWARDS DASHED ARROW
|
||||
'dashleftarrow': '\u21e0', # ⇠ LEFTWARDS DASHED ARROW
|
||||
'dashrightarrow': '\u21e2', # ⇢ RIGHTWARDS DASHED ARROW
|
||||
'dashv': '\u22a3', # ⊣ LEFT TACK
|
||||
'dlsh': '\u21b2', # ↲ DOWNWARDS ARROW WITH TIP LEFTWARDS
|
||||
'doteq': '\u2250', # ≐ APPROACHES THE LIMIT
|
||||
'doteqdot': '\u2251', # ≑ GEOMETRICALLY EQUAL TO
|
||||
'downarrow': '\u2193', # ↓ DOWNWARDS ARROW
|
||||
'downdownarrows': '\u21ca', # ⇊ DOWNWARDS PAIRED ARROWS
|
||||
'downdownharpoons': '\u2965', # ⥥ DOWNWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT
|
||||
'downharpoonleft': '\u21c3', # ⇃ DOWNWARDS HARPOON WITH BARB LEFTWARDS
|
||||
'downharpoonright': '\u21c2', # ⇂ DOWNWARDS HARPOON WITH BARB RIGHTWARDS
|
||||
'downuparrows': '\u21f5', # ⇵ DOWNWARDS ARROW LEFTWARDS OF UPWARDS ARROW
|
||||
'downupharpoons': '\u296f', # ⥯ DOWNWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGHT
|
||||
'drsh': '\u21b3', # ↳ DOWNWARDS ARROW WITH TIP RIGHTWARDS
|
||||
'eqcirc': '\u2256', # ≖ RING IN EQUAL TO
|
||||
'eqcolon': '\u2255', # ≕ EQUALS COLON
|
||||
'eqqcolon': '\u2255', # ≕ EQUALS COLON
|
||||
'eqsim': '\u2242', # ≂ MINUS TILDE
|
||||
'eqslantgtr': '\u2a96', # ⪖ SLANTED EQUAL TO OR GREATER-THAN
|
||||
'eqslantless': '\u2a95', # ⪕ SLANTED EQUAL TO OR LESS-THAN
|
||||
'equiv': '\u2261', # ≡ IDENTICAL TO
|
||||
'fallingdotseq': '\u2252', # ≒ APPROXIMATELY EQUAL TO OR THE IMAGE OF
|
||||
'frown': '\u2322', # ⌢ FROWN
|
||||
'ge': '\u2265', # ≥ GREATER-THAN OR EQUAL TO
|
||||
'geq': '\u2265', # ≥ GREATER-THAN OR EQUAL TO
|
||||
'geqq': '\u2267', # ≧ GREATER-THAN OVER EQUAL TO
|
||||
'geqslant': '\u2a7e', # ⩾ GREATER-THAN OR SLANTED EQUAL TO
|
||||
'gets': '\u2190', # ← LEFTWARDS ARROW
|
||||
'gg': '\u226b', # ≫ MUCH GREATER-THAN
|
||||
'ggcurly': '\u2abc', # ⪼ DOUBLE SUCCEEDS
|
||||
'ggg': '\u22d9', # ⋙ VERY MUCH GREATER-THAN
|
||||
'gggtr': '\u22d9', # ⋙ VERY MUCH GREATER-THAN
|
||||
'gnapprox': '\u2a8a', # ⪊ GREATER-THAN AND NOT APPROXIMATE
|
||||
'gneq': '\u2a88', # ⪈ GREATER-THAN AND SINGLE-LINE NOT EQUAL TO
|
||||
'gneqq': '\u2269', # ≩ GREATER-THAN BUT NOT EQUAL TO
|
||||
'gnsim': '\u22e7', # ⋧ GREATER-THAN BUT NOT EQUIVALENT TO
|
||||
'gtrapprox': '\u2a86', # ⪆ GREATER-THAN OR APPROXIMATE
|
||||
'gtreqless': '\u22db', # ⋛ GREATER-THAN EQUAL TO OR LESS-THAN
|
||||
'gtreqqless': '\u2a8c', # ⪌ GREATER-THAN ABOVE DOUBLE-LINE EQUAL ABOVE LESS-THAN
|
||||
'gtrless': '\u2277', # ≷ GREATER-THAN OR LESS-THAN
|
||||
'gtrsim': '\u2273', # ≳ GREATER-THAN OR EQUIVALENT TO
|
||||
'hash': '\u22d5', # ⋕ EQUAL AND PARALLEL TO
|
||||
'hookleftarrow': '\u21a9', # ↩ LEFTWARDS ARROW WITH HOOK
|
||||
'hookrightarrow': '\u21aa', # ↪ RIGHTWARDS ARROW WITH HOOK
|
||||
'iddots': '\u22f0', # ⋰ UP RIGHT DIAGONAL ELLIPSIS
|
||||
'impliedby': '\u27f8', # ⟸ LONG LEFTWARDS DOUBLE ARROW
|
||||
'implies': '\u27f9', # ⟹ LONG RIGHTWARDS DOUBLE ARROW
|
||||
'in': '\u2208', # ∈ ELEMENT OF
|
||||
'le': '\u2264', # ≤ LESS-THAN OR EQUAL TO
|
||||
'leadsto': '\u2933', # ⤳ WAVE ARROW POINTING DIRECTLY RIGHT
|
||||
'leftarrow': '\u2190', # ← LEFTWARDS ARROW
|
||||
'leftarrowtail': '\u21a2', # ↢ LEFTWARDS ARROW WITH TAIL
|
||||
'leftarrowtriangle': '\u21fd', # ⇽ LEFTWARDS OPEN-HEADED ARROW
|
||||
'leftbarharpoon': '\u296a', # ⥪ LEFTWARDS HARPOON WITH BARB UP ABOVE LONG DASH
|
||||
'leftharpoondown': '\u21bd', # ↽ LEFTWARDS HARPOON WITH BARB DOWNWARDS
|
||||
'leftharpoonup': '\u21bc', # ↼ LEFTWARDS HARPOON WITH BARB UPWARDS
|
||||
'leftleftarrows': '\u21c7', # ⇇ LEFTWARDS PAIRED ARROWS
|
||||
'leftleftharpoons': '\u2962', # ⥢ LEFTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOON WITH BARB DOWN
|
||||
'leftrightarrow': '\u2194', # ↔ LEFT RIGHT ARROW
|
||||
'leftrightarrows': '\u21c6', # ⇆ LEFTWARDS ARROW OVER RIGHTWARDS ARROW
|
||||
'leftrightarrowtriangle': '\u21ff', # ⇿ LEFT RIGHT OPEN-HEADED ARROW
|
||||
'leftrightharpoon': '\u294a', # ⥊ LEFT BARB UP RIGHT BARB DOWN HARPOON
|
||||
'leftrightharpoons': '\u21cb', # ⇋ LEFTWARDS HARPOON OVER RIGHTWARDS HARPOON
|
||||
'leftrightsquigarrow': '\u21ad', # ↭ LEFT RIGHT WAVE ARROW
|
||||
'leftslice': '\u2aa6', # ⪦ LESS-THAN CLOSED BY CURVE
|
||||
'leftsquigarrow': '\u21dc', # ⇜ LEFTWARDS SQUIGGLE ARROW
|
||||
'leftturn': '\u21ba', # ↺ ANTICLOCKWISE OPEN CIRCLE ARROW
|
||||
'leq': '\u2264', # ≤ LESS-THAN OR EQUAL TO
|
||||
'leqq': '\u2266', # ≦ LESS-THAN OVER EQUAL TO
|
||||
'leqslant': '\u2a7d', # ⩽ LESS-THAN OR SLANTED EQUAL TO
|
||||
'lessapprox': '\u2a85', # ⪅ LESS-THAN OR APPROXIMATE
|
||||
'lesseqgtr': '\u22da', # ⋚ LESS-THAN EQUAL TO OR GREATER-THAN
|
||||
'lesseqqgtr': '\u2a8b', # ⪋ LESS-THAN ABOVE DOUBLE-LINE EQUAL ABOVE GREATER-THAN
|
||||
'lessgtr': '\u2276', # ≶ LESS-THAN OR GREATER-THAN
|
||||
'lesssim': '\u2272', # ≲ LESS-THAN OR EQUIVALENT TO
|
||||
'lhd': '\u22b2', # ⊲ NORMAL SUBGROUP OF
|
||||
'lightning': '\u21af', # ↯ DOWNWARDS ZIGZAG ARROW
|
||||
'll': '\u226a', # ≪ MUCH LESS-THAN
|
||||
'llcurly': '\u2abb', # ⪻ DOUBLE PRECEDES
|
||||
'lll': '\u22d8', # ⋘ VERY MUCH LESS-THAN
|
||||
'llless': '\u22d8', # ⋘ VERY MUCH LESS-THAN
|
||||
'lnapprox': '\u2a89', # ⪉ LESS-THAN AND NOT APPROXIMATE
|
||||
'lneq': '\u2a87', # ⪇ LESS-THAN AND SINGLE-LINE NOT EQUAL TO
|
||||
'lneqq': '\u2268', # ≨ LESS-THAN BUT NOT EQUAL TO
|
||||
'lnsim': '\u22e6', # ⋦ LESS-THAN BUT NOT EQUIVALENT TO
|
||||
'longleftarrow': '\u27f5', # ⟵ LONG LEFTWARDS ARROW
|
||||
'longleftrightarrow': '\u27f7', # ⟷ LONG LEFT RIGHT ARROW
|
||||
'longmapsfrom': '\u27fb', # ⟻ LONG LEFTWARDS ARROW FROM BAR
|
||||
'longmapsto': '\u27fc', # ⟼ LONG RIGHTWARDS ARROW FROM BAR
|
||||
'longrightarrow': '\u27f6', # ⟶ LONG RIGHTWARDS ARROW
|
||||
'looparrowleft': '\u21ab', # ↫ LEFTWARDS ARROW WITH LOOP
|
||||
'looparrowright': '\u21ac', # ↬ RIGHTWARDS ARROW WITH LOOP
|
||||
'lrtimes': '\u22c8', # ⋈ BOWTIE
|
||||
'mapsfrom': '\u21a4', # ↤ LEFTWARDS ARROW FROM BAR
|
||||
'mapsto': '\u21a6', # ↦ RIGHTWARDS ARROW FROM BAR
|
||||
'mid': '\u2223', # ∣ DIVIDES
|
||||
'models': '\u22a7', # ⊧ MODELS
|
||||
'multimap': '\u22b8', # ⊸ MULTIMAP
|
||||
'multimapboth': '\u29df', # ⧟ DOUBLE-ENDED MULTIMAP
|
||||
'multimapdotbothA': '\u22b6', # ⊶ ORIGINAL OF
|
||||
'multimapdotbothB': '\u22b7', # ⊷ IMAGE OF
|
||||
'multimapinv': '\u27dc', # ⟜ LEFT MULTIMAP
|
||||
'nLeftarrow': '\u21cd', # ⇍ LEFTWARDS DOUBLE ARROW WITH STROKE
|
||||
'nLeftrightarrow': '\u21ce', # ⇎ LEFT RIGHT DOUBLE ARROW WITH STROKE
|
||||
'nRightarrow': '\u21cf', # ⇏ RIGHTWARDS DOUBLE ARROW WITH STROKE
|
||||
'nVDash': '\u22af', # ⊯ NEGATED DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE
|
||||
'nVdash': '\u22ae', # ⊮ DOES NOT FORCE
|
||||
'ncong': '\u2247', # ≇ NEITHER APPROXIMATELY NOR ACTUALLY EQUAL TO
|
||||
'ne': '\u2260', # ≠ NOT EQUAL TO
|
||||
'nearrow': '\u2197', # ↗ NORTH EAST ARROW
|
||||
'neq': '\u2260', # ≠ NOT EQUAL TO
|
||||
'ngeq': '\u2271', # ≱ NEITHER GREATER-THAN NOR EQUAL TO
|
||||
'ngtr': '\u226f', # ≯ NOT GREATER-THAN
|
||||
'ngtrless': '\u2279', # ≹ NEITHER GREATER-THAN NOR LESS-THAN
|
||||
'ni': '\u220b', # ∋ CONTAINS AS MEMBER
|
||||
'nleftarrow': '\u219a', # ↚ LEFTWARDS ARROW WITH STROKE
|
||||
'nleftrightarrow': '\u21ae', # ↮ LEFT RIGHT ARROW WITH STROKE
|
||||
'nleq': '\u2270', # ≰ NEITHER LESS-THAN NOR EQUAL TO
|
||||
'nless': '\u226e', # ≮ NOT LESS-THAN
|
||||
'nlessgtr': '\u2278', # ≸ NEITHER LESS-THAN NOR GREATER-THAN
|
||||
'nmid': '\u2224', # ∤ DOES NOT DIVIDE
|
||||
'notasymp': '\u226d', # ≭ NOT EQUIVALENT TO
|
||||
'notin': '\u2209', # ∉ NOT AN ELEMENT OF
|
||||
'notni': '\u220c', # ∌ DOES NOT CONTAIN AS MEMBER
|
||||
'notowner': '\u220c', # ∌ DOES NOT CONTAIN AS MEMBER
|
||||
'notslash': '\u233f', # ⌿ APL FUNCTIONAL SYMBOL SLASH BAR
|
||||
'nparallel': '\u2226', # ∦ NOT PARALLEL TO
|
||||
'nprec': '\u2280', # ⊀ DOES NOT PRECEDE
|
||||
'npreceq': '\u22e0', # ⋠ DOES NOT PRECEDE OR EQUAL
|
||||
'nrightarrow': '\u219b', # ↛ RIGHTWARDS ARROW WITH STROKE
|
||||
'nsim': '\u2241', # ≁ NOT TILDE
|
||||
'nsimeq': '\u2244', # ≄ NOT ASYMPTOTICALLY EQUAL TO
|
||||
'nsubseteq': '\u2288', # ⊈ NEITHER A SUBSET OF NOR EQUAL TO
|
||||
'nsucc': '\u2281', # ⊁ DOES NOT SUCCEED
|
||||
'nsucceq': '\u22e1', # ⋡ DOES NOT SUCCEED OR EQUAL
|
||||
'nsupseteq': '\u2289', # ⊉ NEITHER A SUPERSET OF NOR EQUAL TO
|
||||
'ntriangleleft': '\u22ea', # ⋪ NOT NORMAL SUBGROUP OF
|
||||
'ntrianglelefteq': '\u22ec', # ⋬ NOT NORMAL SUBGROUP OF OR EQUAL TO
|
||||
'ntriangleright': '\u22eb', # ⋫ DOES NOT CONTAIN AS NORMAL SUBGROUP
|
||||
'ntrianglerighteq': '\u22ed', # ⋭ DOES NOT CONTAIN AS NORMAL SUBGROUP OR EQUAL
|
||||
'nvDash': '\u22ad', # ⊭ NOT TRUE
|
||||
'nvdash': '\u22ac', # ⊬ DOES NOT PROVE
|
||||
'nwarrow': '\u2196', # ↖ NORTH WEST ARROW
|
||||
'owns': '\u220b', # ∋ CONTAINS AS MEMBER
|
||||
'parallel': '\u2225', # ∥ PARALLEL TO
|
||||
'perp': '\u27c2', # ⟂ PERPENDICULAR
|
||||
'pitchfork': '\u22d4', # ⋔ PITCHFORK
|
||||
'prec': '\u227a', # ≺ PRECEDES
|
||||
'precapprox': '\u2ab7', # ⪷ PRECEDES ABOVE ALMOST EQUAL TO
|
||||
'preccurlyeq': '\u227c', # ≼ PRECEDES OR EQUAL TO
|
||||
'preceq': '\u2aaf', # ⪯ PRECEDES ABOVE SINGLE-LINE EQUALS SIGN
|
||||
'preceqq': '\u2ab3', # ⪳ PRECEDES ABOVE EQUALS SIGN
|
||||
'precnapprox': '\u2ab9', # ⪹ PRECEDES ABOVE NOT ALMOST EQUAL TO
|
||||
'precneqq': '\u2ab5', # ⪵ PRECEDES ABOVE NOT EQUAL TO
|
||||
'precnsim': '\u22e8', # ⋨ PRECEDES BUT NOT EQUIVALENT TO
|
||||
'precsim': '\u227e', # ≾ PRECEDES OR EQUIVALENT TO
|
||||
'propto': '\u221d', # ∝ PROPORTIONAL TO
|
||||
'restriction': '\u21be', # ↾ UPWARDS HARPOON WITH BARB RIGHTWARDS
|
||||
'rhd': '\u22b3', # ⊳ CONTAINS AS NORMAL SUBGROUP
|
||||
'rightarrow': '\u2192', # → RIGHTWARDS ARROW
|
||||
'rightarrowtail': '\u21a3', # ↣ RIGHTWARDS ARROW WITH TAIL
|
||||
'rightarrowtriangle': '\u21fe', # ⇾ RIGHTWARDS OPEN-HEADED ARROW
|
||||
'rightbarharpoon': '\u296c', # ⥬ RIGHTWARDS HARPOON WITH BARB UP ABOVE LONG DASH
|
||||
'rightharpoondown': '\u21c1', # ⇁ RIGHTWARDS HARPOON WITH BARB DOWNWARDS
|
||||
'rightharpoonup': '\u21c0', # ⇀ RIGHTWARDS HARPOON WITH BARB UPWARDS
|
||||
'rightleftarrows': '\u21c4', # ⇄ RIGHTWARDS ARROW OVER LEFTWARDS ARROW
|
||||
'rightleftharpoon': '\u294b', # ⥋ LEFT BARB DOWN RIGHT BARB UP HARPOON
|
||||
'rightleftharpoons': '\u21cc', # ⇌ RIGHTWARDS HARPOON OVER LEFTWARDS HARPOON
|
||||
'rightrightarrows': '\u21c9', # ⇉ RIGHTWARDS PAIRED ARROWS
|
||||
'rightrightharpoons': '\u2964', # ⥤ RIGHTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPOON WITH BARB DOWN
|
||||
'rightslice': '\u2aa7', # ⪧ GREATER-THAN CLOSED BY CURVE
|
||||
'rightsquigarrow': '\u21dd', # ⇝ RIGHTWARDS SQUIGGLE ARROW
|
||||
'rightturn': '\u21bb', # ↻ CLOCKWISE OPEN CIRCLE ARROW
|
||||
'risingdotseq': '\u2253', # ≓ IMAGE OF OR APPROXIMATELY EQUAL TO
|
||||
'searrow': '\u2198', # ↘ SOUTH EAST ARROW
|
||||
'sim': '\u223c', # ∼ TILDE OPERATOR
|
||||
'simeq': '\u2243', # ≃ ASYMPTOTICALLY EQUAL TO
|
||||
'smile': '\u2323', # ⌣ SMILE
|
||||
'sqsubset': '\u228f', # ⊏ SQUARE IMAGE OF
|
||||
'sqsubseteq': '\u2291', # ⊑ SQUARE IMAGE OF OR EQUAL TO
|
||||
'sqsupset': '\u2290', # ⊐ SQUARE ORIGINAL OF
|
||||
'sqsupseteq': '\u2292', # ⊒ SQUARE ORIGINAL OF OR EQUAL TO
|
||||
'strictfi': '\u297c', # ⥼ LEFT FISH TAIL
|
||||
'strictif': '\u297d', # ⥽ RIGHT FISH TAIL
|
||||
'subset': '\u2282', # ⊂ SUBSET OF
|
||||
'subseteq': '\u2286', # ⊆ SUBSET OF OR EQUAL TO
|
||||
'subseteqq': '\u2ac5', # ⫅ SUBSET OF ABOVE EQUALS SIGN
|
||||
'subsetneq': '\u228a', # ⊊ SUBSET OF WITH NOT EQUAL TO
|
||||
'subsetneqq': '\u2acb', # ⫋ SUBSET OF ABOVE NOT EQUAL TO
|
||||
'succ': '\u227b', # ≻ SUCCEEDS
|
||||
'succapprox': '\u2ab8', # ⪸ SUCCEEDS ABOVE ALMOST EQUAL TO
|
||||
'succcurlyeq': '\u227d', # ≽ SUCCEEDS OR EQUAL TO
|
||||
'succeq': '\u2ab0', # ⪰ SUCCEEDS ABOVE SINGLE-LINE EQUALS SIGN
|
||||
'succeqq': '\u2ab4', # ⪴ SUCCEEDS ABOVE EQUALS SIGN
|
||||
'succnapprox': '\u2aba', # ⪺ SUCCEEDS ABOVE NOT ALMOST EQUAL TO
|
||||
'succneqq': '\u2ab6', # ⪶ SUCCEEDS ABOVE NOT EQUAL TO
|
||||
'succnsim': '\u22e9', # ⋩ SUCCEEDS BUT NOT EQUIVALENT TO
|
||||
'succsim': '\u227f', # ≿ SUCCEEDS OR EQUIVALENT TO
|
||||
'supset': '\u2283', # ⊃ SUPERSET OF
|
||||
'supseteq': '\u2287', # ⊇ SUPERSET OF OR EQUAL TO
|
||||
'supseteqq': '\u2ac6', # ⫆ SUPERSET OF ABOVE EQUALS SIGN
|
||||
'supsetneq': '\u228b', # ⊋ SUPERSET OF WITH NOT EQUAL TO
|
||||
'supsetneqq': '\u2acc', # ⫌ SUPERSET OF ABOVE NOT EQUAL TO
|
||||
'swarrow': '\u2199', # ↙ SOUTH WEST ARROW
|
||||
'therefore': '\u2234', # ∴ THEREFORE
|
||||
'to': '\u2192', # → RIGHTWARDS ARROW
|
||||
'trianglelefteq': '\u22b4', # ⊴ NORMAL SUBGROUP OF OR EQUAL TO
|
||||
'triangleq': '\u225c', # ≜ DELTA EQUAL TO
|
||||
'trianglerighteq': '\u22b5', # ⊵ CONTAINS AS NORMAL SUBGROUP OR EQUAL TO
|
||||
'twoheadleftarrow': '\u219e', # ↞ LEFTWARDS TWO HEADED ARROW
|
||||
'twoheadrightarrow': '\u21a0', # ↠ RIGHTWARDS TWO HEADED ARROW
|
||||
'uparrow': '\u2191', # ↑ UPWARDS ARROW
|
||||
'updownarrow': '\u2195', # ↕ UP DOWN ARROW
|
||||
'updownarrows': '\u21c5', # ⇅ UPWARDS ARROW LEFTWARDS OF DOWNWARDS ARROW
|
||||
'updownharpoons': '\u296e', # ⥮ UPWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT
|
||||
'upharpoonleft': '\u21bf', # ↿ UPWARDS HARPOON WITH BARB LEFTWARDS
|
||||
'upharpoonright': '\u21be', # ↾ UPWARDS HARPOON WITH BARB RIGHTWARDS
|
||||
'upuparrows': '\u21c8', # ⇈ UPWARDS PAIRED ARROWS
|
||||
'upupharpoons': '\u2963', # ⥣ UPWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGHT
|
||||
'vDash': '\u22a8', # ⊨ TRUE
|
||||
'vartriangle': '\u25b5', # ▵ WHITE UP-POINTING SMALL TRIANGLE
|
||||
'vartriangleleft': '\u22b2', # ⊲ NORMAL SUBGROUP OF
|
||||
'vartriangleright': '\u22b3', # ⊳ CONTAINS AS NORMAL SUBGROUP
|
||||
'vdash': '\u22a2', # ⊢ RIGHT TACK
|
||||
'wasytherefore': '\u2234', # ∴ THEREFORE
|
||||
}
|
||||
|
||||
mathunder = {
|
||||
'underbrace': '\u23df', # ⏟ BOTTOM CURLY BRACKET
|
||||
}
|
||||
|
||||
space = {
|
||||
' ': ' ', # SPACE
|
||||
',': '\u2006', # SIX-PER-EM SPACE
|
||||
':': '\u205f', # MEDIUM MATHEMATICAL SPACE
|
||||
'medspace': '\u205f', # MEDIUM MATHEMATICAL SPACE
|
||||
'quad': '\u2001', # EM QUAD
|
||||
'thinspace': '\u2006', # SIX-PER-EM SPACE
|
||||
}
|
|
@ -0,0 +1,808 @@
|
|||
# LaTeX math to Unicode symbols translation table
|
||||
# for use with the translate() method of unicode objects.
|
||||
# Generated with ``write_unichar2tex.py`` from the data in
|
||||
# http://milde.users.sourceforge.net/LUCR/Math/
|
||||
|
||||
# Includes commands from: standard LaTeX, amssymb, amsmath
|
||||
|
||||
uni2tex_table = {
|
||||
0xa0: '~',
|
||||
0xa3: '\\pounds ',
|
||||
0xa5: '\\yen ',
|
||||
0xa7: '\\S ',
|
||||
0xac: '\\neg ',
|
||||
0xb1: '\\pm ',
|
||||
0xb6: '\\P ',
|
||||
0xd7: '\\times ',
|
||||
0xf0: '\\eth ',
|
||||
0xf7: '\\div ',
|
||||
0x131: '\\imath ',
|
||||
0x237: '\\jmath ',
|
||||
0x393: '\\Gamma ',
|
||||
0x394: '\\Delta ',
|
||||
0x398: '\\Theta ',
|
||||
0x39b: '\\Lambda ',
|
||||
0x39e: '\\Xi ',
|
||||
0x3a0: '\\Pi ',
|
||||
0x3a3: '\\Sigma ',
|
||||
0x3a5: '\\Upsilon ',
|
||||
0x3a6: '\\Phi ',
|
||||
0x3a8: '\\Psi ',
|
||||
0x3a9: '\\Omega ',
|
||||
0x3b1: '\\alpha ',
|
||||
0x3b2: '\\beta ',
|
||||
0x3b3: '\\gamma ',
|
||||
0x3b4: '\\delta ',
|
||||
0x3b5: '\\varepsilon ',
|
||||
0x3b6: '\\zeta ',
|
||||
0x3b7: '\\eta ',
|
||||
0x3b8: '\\theta ',
|
||||
0x3b9: '\\iota ',
|
||||
0x3ba: '\\kappa ',
|
||||
0x3bb: '\\lambda ',
|
||||
0x3bc: '\\mu ',
|
||||
0x3bd: '\\nu ',
|
||||
0x3be: '\\xi ',
|
||||
0x3c0: '\\pi ',
|
||||
0x3c1: '\\rho ',
|
||||
0x3c2: '\\varsigma ',
|
||||
0x3c3: '\\sigma ',
|
||||
0x3c4: '\\tau ',
|
||||
0x3c5: '\\upsilon ',
|
||||
0x3c6: '\\varphi ',
|
||||
0x3c7: '\\chi ',
|
||||
0x3c8: '\\psi ',
|
||||
0x3c9: '\\omega ',
|
||||
0x3d1: '\\vartheta ',
|
||||
0x3d5: '\\phi ',
|
||||
0x3d6: '\\varpi ',
|
||||
0x3dd: '\\digamma ',
|
||||
0x3f0: '\\varkappa ',
|
||||
0x3f1: '\\varrho ',
|
||||
0x3f5: '\\epsilon ',
|
||||
0x3f6: '\\backepsilon ',
|
||||
0x2001: '\\quad ',
|
||||
0x2003: '\\quad ',
|
||||
0x2006: '\\, ',
|
||||
0x2016: '\\| ',
|
||||
0x2020: '\\dagger ',
|
||||
0x2021: '\\ddagger ',
|
||||
0x2022: '\\bullet ',
|
||||
0x2026: '\\ldots ',
|
||||
0x2032: '\\prime ',
|
||||
0x2035: '\\backprime ',
|
||||
0x205f: '\\: ',
|
||||
0x2102: '\\mathbb{C}',
|
||||
0x210b: '\\mathcal{H}',
|
||||
0x210c: '\\mathfrak{H}',
|
||||
0x210d: '\\mathbb{H}',
|
||||
0x210f: '\\hslash ',
|
||||
0x2110: '\\mathcal{I}',
|
||||
0x2111: '\\Im ',
|
||||
0x2112: '\\mathcal{L}',
|
||||
0x2113: '\\ell ',
|
||||
0x2115: '\\mathbb{N}',
|
||||
0x2118: '\\wp ',
|
||||
0x2119: '\\mathbb{P}',
|
||||
0x211a: '\\mathbb{Q}',
|
||||
0x211b: '\\mathcal{R}',
|
||||
0x211c: '\\Re ',
|
||||
0x211d: '\\mathbb{R}',
|
||||
0x2124: '\\mathbb{Z}',
|
||||
0x2127: '\\mho ',
|
||||
0x2128: '\\mathfrak{Z}',
|
||||
0x212c: '\\mathcal{B}',
|
||||
0x212d: '\\mathfrak{C}',
|
||||
0x2130: '\\mathcal{E}',
|
||||
0x2131: '\\mathcal{F}',
|
||||
0x2132: '\\Finv ',
|
||||
0x2133: '\\mathcal{M}',
|
||||
0x2135: '\\aleph ',
|
||||
0x2136: '\\beth ',
|
||||
0x2137: '\\gimel ',
|
||||
0x2138: '\\daleth ',
|
||||
0x2190: '\\leftarrow ',
|
||||
0x2191: '\\uparrow ',
|
||||
0x2192: '\\rightarrow ',
|
||||
0x2193: '\\downarrow ',
|
||||
0x2194: '\\leftrightarrow ',
|
||||
0x2195: '\\updownarrow ',
|
||||
0x2196: '\\nwarrow ',
|
||||
0x2197: '\\nearrow ',
|
||||
0x2198: '\\searrow ',
|
||||
0x2199: '\\swarrow ',
|
||||
0x219a: '\\nleftarrow ',
|
||||
0x219b: '\\nrightarrow ',
|
||||
0x219e: '\\twoheadleftarrow ',
|
||||
0x21a0: '\\twoheadrightarrow ',
|
||||
0x21a2: '\\leftarrowtail ',
|
||||
0x21a3: '\\rightarrowtail ',
|
||||
0x21a6: '\\mapsto ',
|
||||
0x21a9: '\\hookleftarrow ',
|
||||
0x21aa: '\\hookrightarrow ',
|
||||
0x21ab: '\\looparrowleft ',
|
||||
0x21ac: '\\looparrowright ',
|
||||
0x21ad: '\\leftrightsquigarrow ',
|
||||
0x21ae: '\\nleftrightarrow ',
|
||||
0x21b0: '\\Lsh ',
|
||||
0x21b1: '\\Rsh ',
|
||||
0x21b6: '\\curvearrowleft ',
|
||||
0x21b7: '\\curvearrowright ',
|
||||
0x21ba: '\\circlearrowleft ',
|
||||
0x21bb: '\\circlearrowright ',
|
||||
0x21bc: '\\leftharpoonup ',
|
||||
0x21bd: '\\leftharpoondown ',
|
||||
0x21be: '\\upharpoonright ',
|
||||
0x21bf: '\\upharpoonleft ',
|
||||
0x21c0: '\\rightharpoonup ',
|
||||
0x21c1: '\\rightharpoondown ',
|
||||
0x21c2: '\\downharpoonright ',
|
||||
0x21c3: '\\downharpoonleft ',
|
||||
0x21c4: '\\rightleftarrows ',
|
||||
0x21c6: '\\leftrightarrows ',
|
||||
0x21c7: '\\leftleftarrows ',
|
||||
0x21c8: '\\upuparrows ',
|
||||
0x21c9: '\\rightrightarrows ',
|
||||
0x21ca: '\\downdownarrows ',
|
||||
0x21cb: '\\leftrightharpoons ',
|
||||
0x21cc: '\\rightleftharpoons ',
|
||||
0x21cd: '\\nLeftarrow ',
|
||||
0x21ce: '\\nLeftrightarrow ',
|
||||
0x21cf: '\\nRightarrow ',
|
||||
0x21d0: '\\Leftarrow ',
|
||||
0x21d1: '\\Uparrow ',
|
||||
0x21d2: '\\Rightarrow ',
|
||||
0x21d3: '\\Downarrow ',
|
||||
0x21d4: '\\Leftrightarrow ',
|
||||
0x21d5: '\\Updownarrow ',
|
||||
0x21da: '\\Lleftarrow ',
|
||||
0x21db: '\\Rrightarrow ',
|
||||
0x21dd: '\\rightsquigarrow ',
|
||||
0x21e0: '\\dashleftarrow ',
|
||||
0x21e2: '\\dashrightarrow ',
|
||||
0x2200: '\\forall ',
|
||||
0x2201: '\\complement ',
|
||||
0x2202: '\\partial ',
|
||||
0x2203: '\\exists ',
|
||||
0x2204: '\\nexists ',
|
||||
0x2205: '\\emptyset ',
|
||||
0x2207: '\\nabla ',
|
||||
0x2208: '\\in ',
|
||||
0x2209: '\\notin ',
|
||||
0x220b: '\\ni ',
|
||||
0x220f: '\\prod ',
|
||||
0x2210: '\\coprod ',
|
||||
0x2211: '\\sum ',
|
||||
0x2212: '-',
|
||||
0x2213: '\\mp ',
|
||||
0x2214: '\\dotplus ',
|
||||
0x2215: '\\slash ',
|
||||
0x2216: '\\smallsetminus ',
|
||||
0x2217: '\\ast ',
|
||||
0x2218: '\\circ ',
|
||||
0x2219: '\\bullet ',
|
||||
0x221a: '\\surd ',
|
||||
0x221b: '\\sqrt[3] ',
|
||||
0x221c: '\\sqrt[4] ',
|
||||
0x221d: '\\propto ',
|
||||
0x221e: '\\infty ',
|
||||
0x2220: '\\angle ',
|
||||
0x2221: '\\measuredangle ',
|
||||
0x2222: '\\sphericalangle ',
|
||||
0x2223: '\\mid ',
|
||||
0x2224: '\\nmid ',
|
||||
0x2225: '\\parallel ',
|
||||
0x2226: '\\nparallel ',
|
||||
0x2227: '\\wedge ',
|
||||
0x2228: '\\vee ',
|
||||
0x2229: '\\cap ',
|
||||
0x222a: '\\cup ',
|
||||
0x222b: '\\int ',
|
||||
0x222c: '\\iint ',
|
||||
0x222d: '\\iiint ',
|
||||
0x222e: '\\oint ',
|
||||
0x2234: '\\therefore ',
|
||||
0x2235: '\\because ',
|
||||
0x2236: ':',
|
||||
0x223c: '\\sim ',
|
||||
0x223d: '\\backsim ',
|
||||
0x2240: '\\wr ',
|
||||
0x2241: '\\nsim ',
|
||||
0x2242: '\\eqsim ',
|
||||
0x2243: '\\simeq ',
|
||||
0x2245: '\\cong ',
|
||||
0x2247: '\\ncong ',
|
||||
0x2248: '\\approx ',
|
||||
0x224a: '\\approxeq ',
|
||||
0x224d: '\\asymp ',
|
||||
0x224e: '\\Bumpeq ',
|
||||
0x224f: '\\bumpeq ',
|
||||
0x2250: '\\doteq ',
|
||||
0x2251: '\\Doteq ',
|
||||
0x2252: '\\fallingdotseq ',
|
||||
0x2253: '\\risingdotseq ',
|
||||
0x2256: '\\eqcirc ',
|
||||
0x2257: '\\circeq ',
|
||||
0x225c: '\\triangleq ',
|
||||
0x2260: '\\neq ',
|
||||
0x2261: '\\equiv ',
|
||||
0x2264: '\\leq ',
|
||||
0x2265: '\\geq ',
|
||||
0x2266: '\\leqq ',
|
||||
0x2267: '\\geqq ',
|
||||
0x2268: '\\lneqq ',
|
||||
0x2269: '\\gneqq ',
|
||||
0x226a: '\\ll ',
|
||||
0x226b: '\\gg ',
|
||||
0x226c: '\\between ',
|
||||
0x226e: '\\nless ',
|
||||
0x226f: '\\ngtr ',
|
||||
0x2270: '\\nleq ',
|
||||
0x2271: '\\ngeq ',
|
||||
0x2272: '\\lesssim ',
|
||||
0x2273: '\\gtrsim ',
|
||||
0x2276: '\\lessgtr ',
|
||||
0x2277: '\\gtrless ',
|
||||
0x227a: '\\prec ',
|
||||
0x227b: '\\succ ',
|
||||
0x227c: '\\preccurlyeq ',
|
||||
0x227d: '\\succcurlyeq ',
|
||||
0x227e: '\\precsim ',
|
||||
0x227f: '\\succsim ',
|
||||
0x2280: '\\nprec ',
|
||||
0x2281: '\\nsucc ',
|
||||
0x2282: '\\subset ',
|
||||
0x2283: '\\supset ',
|
||||
0x2286: '\\subseteq ',
|
||||
0x2287: '\\supseteq ',
|
||||
0x2288: '\\nsubseteq ',
|
||||
0x2289: '\\nsupseteq ',
|
||||
0x228a: '\\subsetneq ',
|
||||
0x228b: '\\supsetneq ',
|
||||
0x228e: '\\uplus ',
|
||||
0x228f: '\\sqsubset ',
|
||||
0x2290: '\\sqsupset ',
|
||||
0x2291: '\\sqsubseteq ',
|
||||
0x2292: '\\sqsupseteq ',
|
||||
0x2293: '\\sqcap ',
|
||||
0x2294: '\\sqcup ',
|
||||
0x2295: '\\oplus ',
|
||||
0x2296: '\\ominus ',
|
||||
0x2297: '\\otimes ',
|
||||
0x2298: '\\oslash ',
|
||||
0x2299: '\\odot ',
|
||||
0x229a: '\\circledcirc ',
|
||||
0x229b: '\\circledast ',
|
||||
0x229d: '\\circleddash ',
|
||||
0x229e: '\\boxplus ',
|
||||
0x229f: '\\boxminus ',
|
||||
0x22a0: '\\boxtimes ',
|
||||
0x22a1: '\\boxdot ',
|
||||
0x22a2: '\\vdash ',
|
||||
0x22a3: '\\dashv ',
|
||||
0x22a4: '\\top ',
|
||||
0x22a5: '\\bot ',
|
||||
0x22a7: '\\models ',
|
||||
0x22a8: '\\vDash ',
|
||||
0x22a9: '\\Vdash ',
|
||||
0x22aa: '\\Vvdash ',
|
||||
0x22ac: '\\nvdash ',
|
||||
0x22ad: '\\nvDash ',
|
||||
0x22ae: '\\nVdash ',
|
||||
0x22af: '\\nVDash ',
|
||||
0x22b2: '\\vartriangleleft ',
|
||||
0x22b3: '\\vartriangleright ',
|
||||
0x22b4: '\\trianglelefteq ',
|
||||
0x22b5: '\\trianglerighteq ',
|
||||
0x22b8: '\\multimap ',
|
||||
0x22ba: '\\intercal ',
|
||||
0x22bb: '\\veebar ',
|
||||
0x22bc: '\\barwedge ',
|
||||
0x22c0: '\\bigwedge ',
|
||||
0x22c1: '\\bigvee ',
|
||||
0x22c2: '\\bigcap ',
|
||||
0x22c3: '\\bigcup ',
|
||||
0x22c4: '\\diamond ',
|
||||
0x22c5: '\\cdot ',
|
||||
0x22c6: '\\star ',
|
||||
0x22c7: '\\divideontimes ',
|
||||
0x22c8: '\\bowtie ',
|
||||
0x22c9: '\\ltimes ',
|
||||
0x22ca: '\\rtimes ',
|
||||
0x22cb: '\\leftthreetimes ',
|
||||
0x22cc: '\\rightthreetimes ',
|
||||
0x22cd: '\\backsimeq ',
|
||||
0x22ce: '\\curlyvee ',
|
||||
0x22cf: '\\curlywedge ',
|
||||
0x22d0: '\\Subset ',
|
||||
0x22d1: '\\Supset ',
|
||||
0x22d2: '\\Cap ',
|
||||
0x22d3: '\\Cup ',
|
||||
0x22d4: '\\pitchfork ',
|
||||
0x22d6: '\\lessdot ',
|
||||
0x22d7: '\\gtrdot ',
|
||||
0x22d8: '\\lll ',
|
||||
0x22d9: '\\ggg ',
|
||||
0x22da: '\\lesseqgtr ',
|
||||
0x22db: '\\gtreqless ',
|
||||
0x22de: '\\curlyeqprec ',
|
||||
0x22df: '\\curlyeqsucc ',
|
||||
0x22e0: '\\npreceq ',
|
||||
0x22e1: '\\nsucceq ',
|
||||
0x22e6: '\\lnsim ',
|
||||
0x22e7: '\\gnsim ',
|
||||
0x22e8: '\\precnsim ',
|
||||
0x22e9: '\\succnsim ',
|
||||
0x22ea: '\\ntriangleleft ',
|
||||
0x22eb: '\\ntriangleright ',
|
||||
0x22ec: '\\ntrianglelefteq ',
|
||||
0x22ed: '\\ntrianglerighteq ',
|
||||
0x22ee: '\\vdots ',
|
||||
0x22ef: '\\cdots ',
|
||||
0x22f1: '\\ddots ',
|
||||
0x2308: '\\lceil ',
|
||||
0x2309: '\\rceil ',
|
||||
0x230a: '\\lfloor ',
|
||||
0x230b: '\\rfloor ',
|
||||
0x231c: '\\ulcorner ',
|
||||
0x231d: '\\urcorner ',
|
||||
0x231e: '\\llcorner ',
|
||||
0x231f: '\\lrcorner ',
|
||||
0x2322: '\\frown ',
|
||||
0x2323: '\\smile ',
|
||||
0x23aa: '\\bracevert ',
|
||||
0x23b0: '\\lmoustache ',
|
||||
0x23b1: '\\rmoustache ',
|
||||
0x23d0: '\\arrowvert ',
|
||||
0x23de: '\\overbrace ',
|
||||
0x23df: '\\underbrace ',
|
||||
0x24c7: '\\circledR ',
|
||||
0x24c8: '\\circledS ',
|
||||
0x25b2: '\\blacktriangle ',
|
||||
0x25b3: '\\bigtriangleup ',
|
||||
0x25b7: '\\triangleright ',
|
||||
0x25bc: '\\blacktriangledown ',
|
||||
0x25bd: '\\bigtriangledown ',
|
||||
0x25c1: '\\triangleleft ',
|
||||
0x25c7: '\\Diamond ',
|
||||
0x25ca: '\\lozenge ',
|
||||
0x25ef: '\\bigcirc ',
|
||||
0x25fb: '\\square ',
|
||||
0x25fc: '\\blacksquare ',
|
||||
0x2605: '\\bigstar ',
|
||||
0x2660: '\\spadesuit ',
|
||||
0x2661: '\\heartsuit ',
|
||||
0x2662: '\\diamondsuit ',
|
||||
0x2663: '\\clubsuit ',
|
||||
0x266d: '\\flat ',
|
||||
0x266e: '\\natural ',
|
||||
0x266f: '\\sharp ',
|
||||
0x2713: '\\checkmark ',
|
||||
0x2720: '\\maltese ',
|
||||
0x27c2: '\\perp ',
|
||||
0x27cb: '\\diagup ',
|
||||
0x27cd: '\\diagdown ',
|
||||
0x27e8: '\\langle ',
|
||||
0x27e9: '\\rangle ',
|
||||
0x27ee: '\\lgroup ',
|
||||
0x27ef: '\\rgroup ',
|
||||
0x27f5: '\\longleftarrow ',
|
||||
0x27f6: '\\longrightarrow ',
|
||||
0x27f7: '\\longleftrightarrow ',
|
||||
0x27f8: '\\Longleftarrow ',
|
||||
0x27f9: '\\Longrightarrow ',
|
||||
0x27fa: '\\Longleftrightarrow ',
|
||||
0x27fc: '\\longmapsto ',
|
||||
0x29eb: '\\blacklozenge ',
|
||||
0x29f5: '\\setminus ',
|
||||
0x2a00: '\\bigodot ',
|
||||
0x2a01: '\\bigoplus ',
|
||||
0x2a02: '\\bigotimes ',
|
||||
0x2a04: '\\biguplus ',
|
||||
0x2a06: '\\bigsqcup ',
|
||||
0x2a0c: '\\iiiint ',
|
||||
0x2a3f: '\\amalg ',
|
||||
0x2a5e: '\\doublebarwedge ',
|
||||
0x2a7d: '\\leqslant ',
|
||||
0x2a7e: '\\geqslant ',
|
||||
0x2a85: '\\lessapprox ',
|
||||
0x2a86: '\\gtrapprox ',
|
||||
0x2a87: '\\lneq ',
|
||||
0x2a88: '\\gneq ',
|
||||
0x2a89: '\\lnapprox ',
|
||||
0x2a8a: '\\gnapprox ',
|
||||
0x2a8b: '\\lesseqqgtr ',
|
||||
0x2a8c: '\\gtreqqless ',
|
||||
0x2a95: '\\eqslantless ',
|
||||
0x2a96: '\\eqslantgtr ',
|
||||
0x2aaf: '\\preceq ',
|
||||
0x2ab0: '\\succeq ',
|
||||
0x2ab5: '\\precneqq ',
|
||||
0x2ab6: '\\succneqq ',
|
||||
0x2ab7: '\\precapprox ',
|
||||
0x2ab8: '\\succapprox ',
|
||||
0x2ab9: '\\precnapprox ',
|
||||
0x2aba: '\\succnapprox ',
|
||||
0x2ac5: '\\subseteqq ',
|
||||
0x2ac6: '\\supseteqq ',
|
||||
0x2acb: '\\subsetneqq ',
|
||||
0x2acc: '\\supsetneqq ',
|
||||
0x2b1c: '\\Box ',
|
||||
0x1d400: '\\mathbf{A}',
|
||||
0x1d401: '\\mathbf{B}',
|
||||
0x1d402: '\\mathbf{C}',
|
||||
0x1d403: '\\mathbf{D}',
|
||||
0x1d404: '\\mathbf{E}',
|
||||
0x1d405: '\\mathbf{F}',
|
||||
0x1d406: '\\mathbf{G}',
|
||||
0x1d407: '\\mathbf{H}',
|
||||
0x1d408: '\\mathbf{I}',
|
||||
0x1d409: '\\mathbf{J}',
|
||||
0x1d40a: '\\mathbf{K}',
|
||||
0x1d40b: '\\mathbf{L}',
|
||||
0x1d40c: '\\mathbf{M}',
|
||||
0x1d40d: '\\mathbf{N}',
|
||||
0x1d40e: '\\mathbf{O}',
|
||||
0x1d40f: '\\mathbf{P}',
|
||||
0x1d410: '\\mathbf{Q}',
|
||||
0x1d411: '\\mathbf{R}',
|
||||
0x1d412: '\\mathbf{S}',
|
||||
0x1d413: '\\mathbf{T}',
|
||||
0x1d414: '\\mathbf{U}',
|
||||
0x1d415: '\\mathbf{V}',
|
||||
0x1d416: '\\mathbf{W}',
|
||||
0x1d417: '\\mathbf{X}',
|
||||
0x1d418: '\\mathbf{Y}',
|
||||
0x1d419: '\\mathbf{Z}',
|
||||
0x1d41a: '\\mathbf{a}',
|
||||
0x1d41b: '\\mathbf{b}',
|
||||
0x1d41c: '\\mathbf{c}',
|
||||
0x1d41d: '\\mathbf{d}',
|
||||
0x1d41e: '\\mathbf{e}',
|
||||
0x1d41f: '\\mathbf{f}',
|
||||
0x1d420: '\\mathbf{g}',
|
||||
0x1d421: '\\mathbf{h}',
|
||||
0x1d422: '\\mathbf{i}',
|
||||
0x1d423: '\\mathbf{j}',
|
||||
0x1d424: '\\mathbf{k}',
|
||||
0x1d425: '\\mathbf{l}',
|
||||
0x1d426: '\\mathbf{m}',
|
||||
0x1d427: '\\mathbf{n}',
|
||||
0x1d428: '\\mathbf{o}',
|
||||
0x1d429: '\\mathbf{p}',
|
||||
0x1d42a: '\\mathbf{q}',
|
||||
0x1d42b: '\\mathbf{r}',
|
||||
0x1d42c: '\\mathbf{s}',
|
||||
0x1d42d: '\\mathbf{t}',
|
||||
0x1d42e: '\\mathbf{u}',
|
||||
0x1d42f: '\\mathbf{v}',
|
||||
0x1d430: '\\mathbf{w}',
|
||||
0x1d431: '\\mathbf{x}',
|
||||
0x1d432: '\\mathbf{y}',
|
||||
0x1d433: '\\mathbf{z}',
|
||||
0x1d434: 'A',
|
||||
0x1d435: 'B',
|
||||
0x1d436: 'C',
|
||||
0x1d437: 'D',
|
||||
0x1d438: 'E',
|
||||
0x1d439: 'F',
|
||||
0x1d43a: 'G',
|
||||
0x1d43b: 'H',
|
||||
0x1d43c: 'I',
|
||||
0x1d43d: 'J',
|
||||
0x1d43e: 'K',
|
||||
0x1d43f: 'L',
|
||||
0x1d440: 'M',
|
||||
0x1d441: 'N',
|
||||
0x1d442: 'O',
|
||||
0x1d443: 'P',
|
||||
0x1d444: 'Q',
|
||||
0x1d445: 'R',
|
||||
0x1d446: 'S',
|
||||
0x1d447: 'T',
|
||||
0x1d448: 'U',
|
||||
0x1d449: 'V',
|
||||
0x1d44a: 'W',
|
||||
0x1d44b: 'X',
|
||||
0x1d44c: 'Y',
|
||||
0x1d44d: 'Z',
|
||||
0x1d44e: 'a',
|
||||
0x1d44f: 'b',
|
||||
0x1d450: 'c',
|
||||
0x1d451: 'd',
|
||||
0x1d452: 'e',
|
||||
0x1d453: 'f',
|
||||
0x1d454: 'g',
|
||||
0x1d456: 'i',
|
||||
0x1d457: 'j',
|
||||
0x1d458: 'k',
|
||||
0x1d459: 'l',
|
||||
0x1d45a: 'm',
|
||||
0x1d45b: 'n',
|
||||
0x1d45c: 'o',
|
||||
0x1d45d: 'p',
|
||||
0x1d45e: 'q',
|
||||
0x1d45f: 'r',
|
||||
0x1d460: 's',
|
||||
0x1d461: 't',
|
||||
0x1d462: 'u',
|
||||
0x1d463: 'v',
|
||||
0x1d464: 'w',
|
||||
0x1d465: 'x',
|
||||
0x1d466: 'y',
|
||||
0x1d467: 'z',
|
||||
0x1d49c: '\\mathcal{A}',
|
||||
0x1d49e: '\\mathcal{C}',
|
||||
0x1d49f: '\\mathcal{D}',
|
||||
0x1d4a2: '\\mathcal{G}',
|
||||
0x1d4a5: '\\mathcal{J}',
|
||||
0x1d4a6: '\\mathcal{K}',
|
||||
0x1d4a9: '\\mathcal{N}',
|
||||
0x1d4aa: '\\mathcal{O}',
|
||||
0x1d4ab: '\\mathcal{P}',
|
||||
0x1d4ac: '\\mathcal{Q}',
|
||||
0x1d4ae: '\\mathcal{S}',
|
||||
0x1d4af: '\\mathcal{T}',
|
||||
0x1d4b0: '\\mathcal{U}',
|
||||
0x1d4b1: '\\mathcal{V}',
|
||||
0x1d4b2: '\\mathcal{W}',
|
||||
0x1d4b3: '\\mathcal{X}',
|
||||
0x1d4b4: '\\mathcal{Y}',
|
||||
0x1d4b5: '\\mathcal{Z}',
|
||||
0x1d504: '\\mathfrak{A}',
|
||||
0x1d505: '\\mathfrak{B}',
|
||||
0x1d507: '\\mathfrak{D}',
|
||||
0x1d508: '\\mathfrak{E}',
|
||||
0x1d509: '\\mathfrak{F}',
|
||||
0x1d50a: '\\mathfrak{G}',
|
||||
0x1d50d: '\\mathfrak{J}',
|
||||
0x1d50e: '\\mathfrak{K}',
|
||||
0x1d50f: '\\mathfrak{L}',
|
||||
0x1d510: '\\mathfrak{M}',
|
||||
0x1d511: '\\mathfrak{N}',
|
||||
0x1d512: '\\mathfrak{O}',
|
||||
0x1d513: '\\mathfrak{P}',
|
||||
0x1d514: '\\mathfrak{Q}',
|
||||
0x1d516: '\\mathfrak{S}',
|
||||
0x1d517: '\\mathfrak{T}',
|
||||
0x1d518: '\\mathfrak{U}',
|
||||
0x1d519: '\\mathfrak{V}',
|
||||
0x1d51a: '\\mathfrak{W}',
|
||||
0x1d51b: '\\mathfrak{X}',
|
||||
0x1d51c: '\\mathfrak{Y}',
|
||||
0x1d51e: '\\mathfrak{a}',
|
||||
0x1d51f: '\\mathfrak{b}',
|
||||
0x1d520: '\\mathfrak{c}',
|
||||
0x1d521: '\\mathfrak{d}',
|
||||
0x1d522: '\\mathfrak{e}',
|
||||
0x1d523: '\\mathfrak{f}',
|
||||
0x1d524: '\\mathfrak{g}',
|
||||
0x1d525: '\\mathfrak{h}',
|
||||
0x1d526: '\\mathfrak{i}',
|
||||
0x1d527: '\\mathfrak{j}',
|
||||
0x1d528: '\\mathfrak{k}',
|
||||
0x1d529: '\\mathfrak{l}',
|
||||
0x1d52a: '\\mathfrak{m}',
|
||||
0x1d52b: '\\mathfrak{n}',
|
||||
0x1d52c: '\\mathfrak{o}',
|
||||
0x1d52d: '\\mathfrak{p}',
|
||||
0x1d52e: '\\mathfrak{q}',
|
||||
0x1d52f: '\\mathfrak{r}',
|
||||
0x1d530: '\\mathfrak{s}',
|
||||
0x1d531: '\\mathfrak{t}',
|
||||
0x1d532: '\\mathfrak{u}',
|
||||
0x1d533: '\\mathfrak{v}',
|
||||
0x1d534: '\\mathfrak{w}',
|
||||
0x1d535: '\\mathfrak{x}',
|
||||
0x1d536: '\\mathfrak{y}',
|
||||
0x1d537: '\\mathfrak{z}',
|
||||
0x1d538: '\\mathbb{A}',
|
||||
0x1d539: '\\mathbb{B}',
|
||||
0x1d53b: '\\mathbb{D}',
|
||||
0x1d53c: '\\mathbb{E}',
|
||||
0x1d53d: '\\mathbb{F}',
|
||||
0x1d53e: '\\mathbb{G}',
|
||||
0x1d540: '\\mathbb{I}',
|
||||
0x1d541: '\\mathbb{J}',
|
||||
0x1d542: '\\mathbb{K}',
|
||||
0x1d543: '\\mathbb{L}',
|
||||
0x1d544: '\\mathbb{M}',
|
||||
0x1d546: '\\mathbb{O}',
|
||||
0x1d54a: '\\mathbb{S}',
|
||||
0x1d54b: '\\mathbb{T}',
|
||||
0x1d54c: '\\mathbb{U}',
|
||||
0x1d54d: '\\mathbb{V}',
|
||||
0x1d54e: '\\mathbb{W}',
|
||||
0x1d54f: '\\mathbb{X}',
|
||||
0x1d550: '\\mathbb{Y}',
|
||||
0x1d55c: '\\Bbbk ',
|
||||
0x1d5a0: '\\mathsf{A}',
|
||||
0x1d5a1: '\\mathsf{B}',
|
||||
0x1d5a2: '\\mathsf{C}',
|
||||
0x1d5a3: '\\mathsf{D}',
|
||||
0x1d5a4: '\\mathsf{E}',
|
||||
0x1d5a5: '\\mathsf{F}',
|
||||
0x1d5a6: '\\mathsf{G}',
|
||||
0x1d5a7: '\\mathsf{H}',
|
||||
0x1d5a8: '\\mathsf{I}',
|
||||
0x1d5a9: '\\mathsf{J}',
|
||||
0x1d5aa: '\\mathsf{K}',
|
||||
0x1d5ab: '\\mathsf{L}',
|
||||
0x1d5ac: '\\mathsf{M}',
|
||||
0x1d5ad: '\\mathsf{N}',
|
||||
0x1d5ae: '\\mathsf{O}',
|
||||
0x1d5af: '\\mathsf{P}',
|
||||
0x1d5b0: '\\mathsf{Q}',
|
||||
0x1d5b1: '\\mathsf{R}',
|
||||
0x1d5b2: '\\mathsf{S}',
|
||||
0x1d5b3: '\\mathsf{T}',
|
||||
0x1d5b4: '\\mathsf{U}',
|
||||
0x1d5b5: '\\mathsf{V}',
|
||||
0x1d5b6: '\\mathsf{W}',
|
||||
0x1d5b7: '\\mathsf{X}',
|
||||
0x1d5b8: '\\mathsf{Y}',
|
||||
0x1d5b9: '\\mathsf{Z}',
|
||||
0x1d5ba: '\\mathsf{a}',
|
||||
0x1d5bb: '\\mathsf{b}',
|
||||
0x1d5bc: '\\mathsf{c}',
|
||||
0x1d5bd: '\\mathsf{d}',
|
||||
0x1d5be: '\\mathsf{e}',
|
||||
0x1d5bf: '\\mathsf{f}',
|
||||
0x1d5c0: '\\mathsf{g}',
|
||||
0x1d5c1: '\\mathsf{h}',
|
||||
0x1d5c2: '\\mathsf{i}',
|
||||
0x1d5c3: '\\mathsf{j}',
|
||||
0x1d5c4: '\\mathsf{k}',
|
||||
0x1d5c5: '\\mathsf{l}',
|
||||
0x1d5c6: '\\mathsf{m}',
|
||||
0x1d5c7: '\\mathsf{n}',
|
||||
0x1d5c8: '\\mathsf{o}',
|
||||
0x1d5c9: '\\mathsf{p}',
|
||||
0x1d5ca: '\\mathsf{q}',
|
||||
0x1d5cb: '\\mathsf{r}',
|
||||
0x1d5cc: '\\mathsf{s}',
|
||||
0x1d5cd: '\\mathsf{t}',
|
||||
0x1d5ce: '\\mathsf{u}',
|
||||
0x1d5cf: '\\mathsf{v}',
|
||||
0x1d5d0: '\\mathsf{w}',
|
||||
0x1d5d1: '\\mathsf{x}',
|
||||
0x1d5d2: '\\mathsf{y}',
|
||||
0x1d5d3: '\\mathsf{z}',
|
||||
0x1d670: '\\mathtt{A}',
|
||||
0x1d671: '\\mathtt{B}',
|
||||
0x1d672: '\\mathtt{C}',
|
||||
0x1d673: '\\mathtt{D}',
|
||||
0x1d674: '\\mathtt{E}',
|
||||
0x1d675: '\\mathtt{F}',
|
||||
0x1d676: '\\mathtt{G}',
|
||||
0x1d677: '\\mathtt{H}',
|
||||
0x1d678: '\\mathtt{I}',
|
||||
0x1d679: '\\mathtt{J}',
|
||||
0x1d67a: '\\mathtt{K}',
|
||||
0x1d67b: '\\mathtt{L}',
|
||||
0x1d67c: '\\mathtt{M}',
|
||||
0x1d67d: '\\mathtt{N}',
|
||||
0x1d67e: '\\mathtt{O}',
|
||||
0x1d67f: '\\mathtt{P}',
|
||||
0x1d680: '\\mathtt{Q}',
|
||||
0x1d681: '\\mathtt{R}',
|
||||
0x1d682: '\\mathtt{S}',
|
||||
0x1d683: '\\mathtt{T}',
|
||||
0x1d684: '\\mathtt{U}',
|
||||
0x1d685: '\\mathtt{V}',
|
||||
0x1d686: '\\mathtt{W}',
|
||||
0x1d687: '\\mathtt{X}',
|
||||
0x1d688: '\\mathtt{Y}',
|
||||
0x1d689: '\\mathtt{Z}',
|
||||
0x1d68a: '\\mathtt{a}',
|
||||
0x1d68b: '\\mathtt{b}',
|
||||
0x1d68c: '\\mathtt{c}',
|
||||
0x1d68d: '\\mathtt{d}',
|
||||
0x1d68e: '\\mathtt{e}',
|
||||
0x1d68f: '\\mathtt{f}',
|
||||
0x1d690: '\\mathtt{g}',
|
||||
0x1d691: '\\mathtt{h}',
|
||||
0x1d692: '\\mathtt{i}',
|
||||
0x1d693: '\\mathtt{j}',
|
||||
0x1d694: '\\mathtt{k}',
|
||||
0x1d695: '\\mathtt{l}',
|
||||
0x1d696: '\\mathtt{m}',
|
||||
0x1d697: '\\mathtt{n}',
|
||||
0x1d698: '\\mathtt{o}',
|
||||
0x1d699: '\\mathtt{p}',
|
||||
0x1d69a: '\\mathtt{q}',
|
||||
0x1d69b: '\\mathtt{r}',
|
||||
0x1d69c: '\\mathtt{s}',
|
||||
0x1d69d: '\\mathtt{t}',
|
||||
0x1d69e: '\\mathtt{u}',
|
||||
0x1d69f: '\\mathtt{v}',
|
||||
0x1d6a0: '\\mathtt{w}',
|
||||
0x1d6a1: '\\mathtt{x}',
|
||||
0x1d6a2: '\\mathtt{y}',
|
||||
0x1d6a3: '\\mathtt{z}',
|
||||
0x1d6a4: '\\imath ',
|
||||
0x1d6a5: '\\jmath ',
|
||||
0x1d6aa: '\\mathbf{\\Gamma}',
|
||||
0x1d6ab: '\\mathbf{\\Delta}',
|
||||
0x1d6af: '\\mathbf{\\Theta}',
|
||||
0x1d6b2: '\\mathbf{\\Lambda}',
|
||||
0x1d6b5: '\\mathbf{\\Xi}',
|
||||
0x1d6b7: '\\mathbf{\\Pi}',
|
||||
0x1d6ba: '\\mathbf{\\Sigma}',
|
||||
0x1d6bc: '\\mathbf{\\Upsilon}',
|
||||
0x1d6bd: '\\mathbf{\\Phi}',
|
||||
0x1d6bf: '\\mathbf{\\Psi}',
|
||||
0x1d6c0: '\\mathbf{\\Omega}',
|
||||
0x1d6e4: '\\mathit{\\Gamma}',
|
||||
0x1d6e5: '\\mathit{\\Delta}',
|
||||
0x1d6e9: '\\mathit{\\Theta}',
|
||||
0x1d6ec: '\\mathit{\\Lambda}',
|
||||
0x1d6ef: '\\mathit{\\Xi}',
|
||||
0x1d6f1: '\\mathit{\\Pi}',
|
||||
0x1d6f4: '\\mathit{\\Sigma}',
|
||||
0x1d6f6: '\\mathit{\\Upsilon}',
|
||||
0x1d6f7: '\\mathit{\\Phi}',
|
||||
0x1d6f9: '\\mathit{\\Psi}',
|
||||
0x1d6fa: '\\mathit{\\Omega}',
|
||||
0x1d6fc: '\\alpha ',
|
||||
0x1d6fd: '\\beta ',
|
||||
0x1d6fe: '\\gamma ',
|
||||
0x1d6ff: '\\delta ',
|
||||
0x1d700: '\\varepsilon ',
|
||||
0x1d701: '\\zeta ',
|
||||
0x1d702: '\\eta ',
|
||||
0x1d703: '\\theta ',
|
||||
0x1d704: '\\iota ',
|
||||
0x1d705: '\\kappa ',
|
||||
0x1d706: '\\lambda ',
|
||||
0x1d707: '\\mu ',
|
||||
0x1d708: '\\nu ',
|
||||
0x1d709: '\\xi ',
|
||||
0x1d70b: '\\pi ',
|
||||
0x1d70c: '\\rho ',
|
||||
0x1d70d: '\\varsigma ',
|
||||
0x1d70e: '\\sigma ',
|
||||
0x1d70f: '\\tau ',
|
||||
0x1d710: '\\upsilon ',
|
||||
0x1d711: '\\varphi ',
|
||||
0x1d712: '\\chi ',
|
||||
0x1d713: '\\psi ',
|
||||
0x1d714: '\\omega ',
|
||||
0x1d715: '\\partial ',
|
||||
0x1d716: '\\epsilon ',
|
||||
0x1d717: '\\vartheta ',
|
||||
0x1d718: '\\varkappa ',
|
||||
0x1d719: '\\phi ',
|
||||
0x1d71a: '\\varrho ',
|
||||
0x1d71b: '\\varpi ',
|
||||
0x1d7ce: '\\mathbf{0}',
|
||||
0x1d7cf: '\\mathbf{1}',
|
||||
0x1d7d0: '\\mathbf{2}',
|
||||
0x1d7d1: '\\mathbf{3}',
|
||||
0x1d7d2: '\\mathbf{4}',
|
||||
0x1d7d3: '\\mathbf{5}',
|
||||
0x1d7d4: '\\mathbf{6}',
|
||||
0x1d7d5: '\\mathbf{7}',
|
||||
0x1d7d6: '\\mathbf{8}',
|
||||
0x1d7d7: '\\mathbf{9}',
|
||||
0x1d7e2: '\\mathsf{0}',
|
||||
0x1d7e3: '\\mathsf{1}',
|
||||
0x1d7e4: '\\mathsf{2}',
|
||||
0x1d7e5: '\\mathsf{3}',
|
||||
0x1d7e6: '\\mathsf{4}',
|
||||
0x1d7e7: '\\mathsf{5}',
|
||||
0x1d7e8: '\\mathsf{6}',
|
||||
0x1d7e9: '\\mathsf{7}',
|
||||
0x1d7ea: '\\mathsf{8}',
|
||||
0x1d7eb: '\\mathsf{9}',
|
||||
0x1d7f6: '\\mathtt{0}',
|
||||
0x1d7f7: '\\mathtt{1}',
|
||||
0x1d7f8: '\\mathtt{2}',
|
||||
0x1d7f9: '\\mathtt{3}',
|
||||
0x1d7fa: '\\mathtt{4}',
|
||||
0x1d7fb: '\\mathtt{5}',
|
||||
0x1d7fc: '\\mathtt{6}',
|
||||
0x1d7fd: '\\mathtt{7}',
|
||||
0x1d7fe: '\\mathtt{8}',
|
||||
0x1d7ff: '\\mathtt{9}',
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue