first commit

This commit is contained in:
Yura 2024-09-15 15:12:16 +03:00
commit 417e54da96
5696 changed files with 900003 additions and 0 deletions

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.bool cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.buffer cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.bytes cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.cobject cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.complex cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.dict cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.exc cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.float cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.function cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.getargs cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.instance cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.int cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.iterator cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.list cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.long cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.mapping cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.mem cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.method cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.module cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.number cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.object cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.oldbuffer cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.pycapsule cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.ref cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.sequence cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.set cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.string cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.tuple cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.type cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.unicode cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.version cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from cpython.weakref cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from libc.stdio cimport *

View file

@ -0,0 +1,2 @@
# Present for backwards compatibility
from libc.stdlib cimport *

View file

@ -0,0 +1,91 @@
cdef extern from "<vector>" namespace std:
cdef cppclass vector[TYPE]:
#constructors
__init__()
__init__(vector&)
__init__(int)
__init__(int, TYPE&)
__init__(iterator, iterator)
#operators
TYPE& __getitem__(int)
TYPE& __setitem__(int, TYPE&)
vector __new__(vector&)
bool __eq__(vector&, vector&)
bool __ne__(vector&, vector&)
bool __lt__(vector&, vector&)
bool __gt__(vector&, vector&)
bool __le__(vector&, vector&)
bool __ge__(vector&, vector&)
#others
void assign(int, TYPE)
#void assign(iterator, iterator)
TYPE& at(int)
TYPE& back()
iterator begin()
int capacity()
void clear()
bool empty()
iterator end()
iterator erase(iterator)
iterator erase(iterator, iterator)
TYPE& front()
iterator insert(iterator, TYPE&)
void insert(iterator, int, TYPE&)
void insert(iterator, iterator)
int max_size()
void pop_back()
void push_back(TYPE&)
iterator rbegin()
iterator rend()
void reserve(int)
void resize(int)
void resize(int, TYPE&) #void resize(size_type num, const TYPE& = TYPE())
int size()
void swap(container&)
cdef extern from "<deque>" namespace std:
cdef cppclass deque[TYPE]:
#constructors
__init__()
__init__(deque&)
__init__(int)
__init__(int, TYPE&)
__init__(iterator, iterator)
#operators
TYPE& operator[]( size_type index );
const TYPE& operator[]( size_type index ) const;
deque __new__(deque&);
bool __eq__(deque&, deque&);
bool __ne__(deque&, deque&);
bool __lt__(deque&, deque&);
bool __gt__(deque&, deque&);
bool __le__(deque&, deque&);
bool __ge__(deque&, deque&);
#others
void assign(int, TYPE&)
void assign(iterator, iterator)
TYPE& at(int)
TYPE& back()
iterator begin()
void clear()
bool empty()
iterator end()
iterator erase(iterator)
iterator erase(iterator, iterator)
TYPE& front()
iterator insert(iterator, TYPE&)
void insert(iterator, int, TYPE&)
void insert(iterator, iterator, iterator)
int max_size()
void pop_back()
void pop_front()
void push_back(TYPE&)
void push_front(TYPE&)
iterator rbegin()
iterator rend()
void resize(int)
void resize(int, TYPE&)
int size()
void swap(container&)

View file

@ -0,0 +1,184 @@
#####################################################################
#
# These are the Cython pxd files for (most of) the Python/C API.
#
# REFERENCE COUNTING:
#
# JUST TO SCARE YOU:
# If you are going to use any of the Python/C API in your Cython
# program, you might be responsible for doing reference counting.
# Read http://docs.python.org/api/refcounts.html which is so
# important I've copied it below.
#
# For all the declaration below, whenever the Py_ function returns
# a *new reference* to a PyObject*, the return type is "object".
# When the function returns a borrowed reference, the return
# type is PyObject*. When Cython sees "object" as a return type
# it doesn't increment the reference count. When it sees PyObject*
# in order to use the result you must explicitly cast to <object>,
# and when you do that Cython increments the reference count whether
# you want it to or not, forcing you to an explicit DECREF (or leak memory).
# To avoid this we make the above convention. Note, you can
# always locally override this convention by putting something like
#
# cdef extern from "Python.h":
# PyObject* PyNumber_Add(PyObject *o1, PyObject *o2)
#
# in your .pyx file or into a cimported .pxd file. You just have to
# use the one from the right (pxd-)namespace then.
#
# Cython automatically takes care of reference counting for anything
# of type object.
#
## More precisely, I think the correct convention for
## using the Python/C API from Cython is as follows.
##
## (1) Declare all input arguments as type "object". This way no explicit
## <PyObject*> casting is needed, and moreover Cython doesn't generate
## any funny reference counting.
## (2) Declare output as object if a new reference is returned.
## (3) Declare output as PyObject* if a borrowed reference is returned.
##
## This way when you call objects, no cast is needed, and if the api
## calls returns a new reference (which is about 95% of them), then
## you can just assign to a variable of type object. With borrowed
## references if you do an explicit typecast to <object>, Cython generates an
## INCREF and DECREF so you have to be careful. However, you got a
## borrowed reference in this case, so there's got to be another reference
## to your object, so you're OK, as long as you relealize this
## and use the result of an explicit cast to <object> as a borrowed
## reference (and you can call Py_INCREF if you want to turn it
## into another reference for some reason).
#
# "The reference count is important because today's computers have
# a finite (and often severely limited) memory size; it counts how
# many different places there are that have a reference to an
# object. Such a place could be another object, or a global (or
# static) C variable, or a local variable in some C function. When
# an object's reference count becomes zero, the object is
# deallocated. If it contains references to other objects, their
# reference count is decremented. Those other objects may be
# deallocated in turn, if this decrement makes their reference
# count become zero, and so on. (There's an obvious problem with
# objects that reference each other here; for now, the solution is
# ``don't do that.'')
#
# Reference counts are always manipulated explicitly. The normal
# way is to use the macro Py_INCREF() to increment an object's
# reference count by one, and Py_DECREF() to decrement it by
# one. The Py_DECREF() macro is considerably more complex than the
# incref one, since it must check whether the reference count
# becomes zero and then cause the object's deallocator to be
# called. The deallocator is a function pointer contained in the
# object's type structure. The type-specific deallocator takes
# care of decrementing the reference counts for other objects
# contained in the object if this is a compound object type, such
# as a list, as well as performing any additional finalization
# that's needed. There's no chance that the reference count can
# overflow; at least as many bits are used to hold the reference
# count as there are distinct memory locations in virtual memory
# (assuming sizeof(long) >= sizeof(char*)). Thus, the reference
# count increment is a simple operation.
#
# It is not necessary to increment an object's reference count for
# every local variable that contains a pointer to an object. In
# theory, the object's reference count goes up by one when the
# variable is made to point to it and it goes down by one when the
# variable goes out of scope. However, these two cancel each other
# out, so at the end the reference count hasn't changed. The only
# real reason to use the reference count is to prevent the object
# from being deallocated as long as our variable is pointing to
# it. If we know that there is at least one other reference to the
# object that lives at least as long as our variable, there is no
# need to increment the reference count temporarily. An important
# situation where this arises is in objects that are passed as
# arguments to C functions in an extension module that are called
# from Python; the call mechanism guarantees to hold a reference
# to every argument for the duration of the call.
#
# However, a common pitfall is to extract an object from a list
# and hold on to it for a while without incrementing its reference
# count. Some other operation might conceivably remove the object
# from the list, decrementing its reference count and possible
# deallocating it. The real danger is that innocent-looking
# operations may invoke arbitrary Python code which could do this;
# there is a code path which allows control to flow back to the
# user from a Py_DECREF(), so almost any operation is potentially
# dangerous.
#
# A safe approach is to always use the generic operations
# (functions whose name begins with "PyObject_", "PyNumber_",
# "PySequence_" or "PyMapping_"). These operations always
# increment the reference count of the object they return. This
# leaves the caller with the responsibility to call Py_DECREF()
# when they are done with the result; this soon becomes second
# nature.
#
# Now you should read http://docs.python.org/api/refcountDetails.html
# just to be sure you understand what is going on.
#
#################################################################
#################################################################
# BIG FAT DEPRECATION WARNING
#################################################################
# Do NOT cimport any names directly from the cpython package,
# despite of the star-imports below. They will be removed at
# some point.
# Instead, use the correct sub-module to draw your cimports from.
#
# A direct cimport from the package will make your code depend on
# all of the existing declarations. This may have side-effects
# and reduces the portability of your code.
#################################################################
# START OF DEPRECATED SECTION
#################################################################
from cpython.version cimport *
from cpython.ref cimport *
from cpython.exc cimport *
from cpython.module cimport *
from cpython.mem cimport *
from cpython.tuple cimport *
from cpython.list cimport *
from cpython.object cimport *
from cpython.sequence cimport *
from cpython.mapping cimport *
from cpython.iterator cimport *
from cpython.type cimport *
from cpython.number cimport *
from cpython.int cimport *
from cpython.bool cimport *
from cpython.long cimport *
from cpython.float cimport *
from cpython.complex cimport *
from cpython.string cimport *
from cpython.unicode cimport *
from cpython.dict cimport *
from cpython.instance cimport *
from cpython.function cimport *
from cpython.method cimport *
from cpython.weakref cimport *
from cpython.getargs cimport *
from cpython.pythread cimport *
from cpython.pystate cimport *
# Python <= 2.x
from cpython.cobject cimport *
from cpython.oldbuffer cimport *
# Python >= 2.4
from cpython.set cimport *
# Python >= 2.6
from cpython.buffer cimport *
from cpython.bytes cimport *
# Python >= 3.0
from cpython.pycapsule cimport *
#################################################################
# END OF DEPRECATED SECTION
#################################################################

View file

@ -0,0 +1,163 @@
"""
array.pxd
Cython interface to Python's array.array module.
* 1D contiguous data view
* tools for fast array creation, maximum C-speed and handiness
* suitable as allround light weight auto-array within Cython code too
Usage:
>>> cimport array
Usage through Cython buffer interface (Py2.3+):
>>> def f(arg1, unsigned i, double dx)
... array.array[double] a = arg1
... a[i] += dx
Fast C-level new_array(_zeros), resize_array, copy_array, Py_SIZE(obj),
zero_array
cdef array.array[double] k = array.copy(d)
cdef array.array[double] n = array.array(d, Py_SIZE(d) * 2 )
cdef array.array[double] m = array.zeros_like(FLOAT_TEMPLATE)
array.resize(f, 200000)
Zero overhead with naked data pointer views by union:
_f, _d, _i, _c, _u, ...
=> Original C array speed + Python dynamic memory management
cdef array.array a = inarray
if
a._d[2] += 0.66 # use as double array without extra casting
float *subview = vector._f + 10 # starting from 10th element
unsigned char *subview_buffer = vector._B + 4
Suitable as lightweight arrays intra Cython without speed penalty.
Replacement for C stack/malloc arrays; no trouble with refcounting,
mem.leaks; seamless Python compatibility, buffer() optional
last changes: 2009-05-15 rk
: 2009-12-06 bp
: 2012-05-02 andreasvc
: (see revision control)
"""
from libc.string cimport strcat, strncat, \
memset, memchr, memcmp, memcpy, memmove
from cpython.object cimport Py_SIZE
from cpython.ref cimport PyTypeObject, Py_TYPE
from cpython.exc cimport PyErr_BadArgument
from cpython.mem cimport PyObject_Malloc, PyObject_Free
cdef extern from *: # Hard-coded utility code hack.
ctypedef class array.array [object arrayobject]
ctypedef object GETF(array a, Py_ssize_t ix)
ctypedef object SETF(array a, Py_ssize_t ix, object o)
ctypedef struct arraydescr: # [object arraydescr]:
char typecode
int itemsize
GETF getitem # PyObject * (*getitem)(struct arrayobject *, Py_ssize_t);
SETF setitem # int (*setitem)(struct arrayobject *, Py_ssize_t, PyObject *);
ctypedef union __data_union:
# views of ob_item:
float* as_floats # direct float pointer access to buffer
double* as_doubles # double ...
int* as_ints
unsigned int *as_uints
unsigned char *as_uchars
signed char *as_schars
char *as_chars
unsigned long *as_ulongs
long *as_longs
unsigned long long *as_ulonglongs
long long *as_longlongs
short *as_shorts
unsigned short *as_ushorts
Py_UNICODE *as_pyunicodes
void *as_voidptr
ctypedef class array.array [object arrayobject]:
cdef __cythonbufferdefaults__ = {'ndim' : 1, 'mode':'c'}
cdef:
Py_ssize_t ob_size
arraydescr* ob_descr # struct arraydescr *ob_descr;
__data_union data
def __getbuffer__(self, Py_buffer* info, int flags):
# This implementation of getbuffer is geared towards Cython
# requirements, and does not yet fulfill the PEP.
# In particular strided access is always provided regardless
# of flags
item_count = Py_SIZE(self)
info.suboffsets = NULL
info.buf = self.data.as_chars
info.readonly = 0
info.ndim = 1
info.itemsize = self.ob_descr.itemsize # e.g. sizeof(float)
info.len = info.itemsize * item_count
info.shape = <Py_ssize_t*> PyObject_Malloc(sizeof(Py_ssize_t) + 2)
if not info.shape:
raise MemoryError()
info.shape[0] = item_count # constant regardless of resizing
info.strides = &info.itemsize
info.format = <char*> (info.shape + 1)
info.format[0] = self.ob_descr.typecode
info.format[1] = 0
info.obj = self
def __releasebuffer__(self, Py_buffer* info):
PyObject_Free(info.shape)
array newarrayobject(PyTypeObject* type, Py_ssize_t size, arraydescr *descr)
# fast resize/realloc
# not suitable for small increments; reallocation 'to the point'
int resize(array self, Py_ssize_t n) except -1
# efficient for small increments (not in Py2.3-)
int resize_smart(array self, Py_ssize_t n) except -1
cdef inline array clone(array template, Py_ssize_t length, bint zero):
""" fast creation of a new array, given a template array.
type will be same as template.
if zero is true, new array will be initialized with zeroes."""
cdef array op = newarrayobject(Py_TYPE(template), length, template.ob_descr)
if zero and op is not None:
memset(op.data.as_chars, 0, length * op.ob_descr.itemsize)
return op
cdef inline array copy(array self):
""" make a copy of an array. """
cdef array op = newarrayobject(Py_TYPE(self), Py_SIZE(self), self.ob_descr)
memcpy(op.data.as_chars, self.data.as_chars, Py_SIZE(op) * op.ob_descr.itemsize)
return op
cdef inline int extend_buffer(array self, char* stuff, Py_ssize_t n) except -1:
""" efficient appending of new stuff of same type
(e.g. of same array type)
n: number of elements (not number of bytes!) """
cdef Py_ssize_t itemsize = self.ob_descr.itemsize
cdef Py_ssize_t origsize = Py_SIZE(self)
resize_smart(self, origsize + n)
memcpy(self.data.as_chars + origsize * itemsize, stuff, n * itemsize)
return 0
cdef inline int extend(array self, array other) except -1:
""" extend array with data from another array; types must match. """
if self.ob_descr.typecode != other.ob_descr.typecode:
PyErr_BadArgument()
return extend_buffer(self, other.data.as_chars, Py_SIZE(other))
cdef inline void zero(array self):
""" set all elements of array to zero. """
memset(self.data.as_chars, 0, Py_SIZE(self) * self.ob_descr.itemsize)

View file

@ -0,0 +1,38 @@
cdef extern from "Python.h":
############################################################################
# 7.2.2 Boolean Objects
############################################################################
ctypedef class __builtin__.bool [object PyBoolObject]:
pass
# Booleans in Python are implemented as a subclass of
# integers. There are only two booleans, Py_False and Py_True. As
# such, the normal creation and deletion functions don't apply to
# booleans. The following macros are available, however.
bint PyBool_Check(object o)
# Return true if o is of type PyBool_Type.
#PyObject* Py_False
# The Python False object. This object has no methods. It needs to
# be treated just like any other object with respect to reference
# counts.
#PyObject* Py_True
# The Python True object. This object has no methods. It needs to
# be treated just like any other object with respect to reference
# counts.
# Py_RETURN_FALSE
# Return Py_False from a function, properly incrementing its reference count.
# Py_RETURN_TRUE
# Return Py_True from a function, properly incrementing its reference count.
object PyBool_FromLong(long v)
# Return value: New reference.
# Return a new reference to Py_True or Py_False depending on the truth value of v.

View file

@ -0,0 +1,112 @@
# Please see the Python header files (object.h/abstract.h) for docs
cdef extern from "Python.h":
cdef enum:
PyBUF_MAX_NDIM
cdef enum:
PyBUF_SIMPLE,
PyBUF_WRITABLE,
PyBUF_WRITEABLE, # backwards compatibility
PyBUF_FORMAT,
PyBUF_ND,
PyBUF_STRIDES,
PyBUF_C_CONTIGUOUS,
PyBUF_F_CONTIGUOUS,
PyBUF_ANY_CONTIGUOUS,
PyBUF_INDIRECT,
PyBUF_CONTIG,
PyBUF_CONTIG_RO,
PyBUF_STRIDED,
PyBUF_STRIDED_RO,
PyBUF_RECORDS,
PyBUF_RECORDS_RO,
PyBUF_FULL,
PyBUF_FULL_RO,
PyBUF_READ,
PyBUF_WRITE,
PyBUF_SHADOW
bint PyObject_CheckBuffer(object obj)
# Return 1 if obj supports the buffer interface otherwise 0.
int PyObject_GetBuffer(object obj, Py_buffer *view, int flags) except -1
# Export obj into a Py_buffer, view. These arguments must never be
# NULL. The flags argument is a bit field indicating what kind of
# buffer the caller is prepared to deal with and therefore what
# kind of buffer the exporter is allowed to return. The buffer
# interface allows for complicated memory sharing possibilities,
# but some caller may not be able to handle all the complexity but
# may want to see if the exporter will let them take a simpler
# view to its memory.
# Some exporters may not be able to share memory in every possible
# way and may need to raise errors to signal to some consumers
# that something is just not possible. These errors should be a
# BufferError unless there is another error that is actually
# causing the problem. The exporter can use flags information to
# simplify how much of the Py_buffer structure is filled in with
# non-default values and/or raise an error if the object cant
# support a simpler view of its memory.
# 0 is returned on success and -1 on error.
void PyBuffer_Release(Py_buffer *view)
# Release the buffer view. This should be called when the buffer
# is no longer being used as it may free memory from it.
void* PyBuffer_GetPointer(Py_buffer *view, Py_ssize_t *indices)
# ??
Py_ssize_t PyBuffer_SizeFromFormat(char *) # actually const char
# Return the implied ~Py_buffer.itemsize from the struct-stype
# ~Py_buffer.format
int PyBuffer_ToContiguous(void *buf, Py_buffer *view, Py_ssize_t len, char fort)
# ??
int PyBuffer_FromContiguous(Py_buffer *view, void *buf, Py_ssize_t len, char fort)
# ??
int PyObject_CopyToObject(object obj, void *buf, Py_ssize_t len, char fortran) except -1
# Copy len bytes of data pointed to by the contiguous chunk of
# memory pointed to by buf into the buffer exported by obj. The
# buffer must of course be writable. Return 0 on success and
# return -1 and raise an error on failure. If the object does not
# have a writable buffer, then an error is raised. If fortran is
# 'F', then if the object is multi-dimensional, then the data will
# be copied into the array in Fortran-style (first dimension
# varies the fastest). If fortran is 'C', then the data will be
# copied into the array in C-style (last dimension varies the
# fastest). If fortran is 'A', then it does not matter and the
# copy will be made in whatever way is more efficient.
int PyObject_CopyData(object dest, object src) except -1
# Copy the data from the src buffer to the buffer of destination
bint PyBuffer_IsContiguous(Py_buffer *view, char fort)
# Return 1 if the memory defined by the view is C-style (fortran
# is 'C') or Fortran-style (fortran is 'F') contiguous or either
# one (fortran is 'A'). Return 0 otherwise.
void PyBuffer_FillContiguousStrides(int ndims,
Py_ssize_t *shape,
Py_ssize_t *strides,
Py_ssize_t itemsize,
char fort)
# Fill the strides array with byte-strides of a contiguous
# (Fortran-style if fort is 'F' or C-style otherwise) array of the
# given shape with the given number of bytes per element.
int PyBuffer_FillInfo(Py_buffer *view, object exporter, void *buf,
Py_ssize_t len, int readonly, int flags) except -1
# Fill in a buffer-info structure, view, correctly for an exporter
# that can only share a contiguous chunk of memory of “unsigned
# bytes” of the given length. Return 0 on success and -1 (with
# raising an error) on error.
# DEPRECATED HERE: do not cimport from here, cimport from cpython.object instead
object PyObject_Format(object obj, object format_spec)
# Takes an arbitrary object and returns the result of calling
# obj.__format__(format_spec).

View file

@ -0,0 +1,33 @@
from .object cimport PyObject
cdef extern from "Python.h":
bint PyByteArray_Check(object o)
# Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type.
bint PyByteArray_CheckExact(object o)
# Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type.
bytearray PyByteArray_FromObject(object o)
# Return a new bytearray object from any object, o, that implements the buffer protocol.
bytearray PyByteArray_FromStringAndSize(char *string, Py_ssize_t len)
# Create a new bytearray object from string and its length, len. On failure, NULL is returned.
bytearray PyByteArray_Concat(object a, object b)
# Concat bytearrays a and b and return a new bytearray with the result.
Py_ssize_t PyByteArray_Size(object bytearray)
# Return the size of bytearray after checking for a NULL pointer.
char* PyByteArray_AsString(object bytearray)
# Return the contents of bytearray as a char array after checking for a NULL pointer.
# The returned array always has an extra null byte appended.
int PyByteArray_Resize(object bytearray, Py_ssize_t len)
# Resize the internal buffer of bytearray to len.
char* PyByteArray_AS_STRING(object bytearray)
# Macro version of PyByteArray_AsString().
Py_ssize_t PyByteArray_GET_SIZE(object bytearray)
# Macro version of PyByteArray_Size().

View file

@ -0,0 +1,198 @@
from .object cimport PyObject
cdef extern from "Python.h":
ctypedef struct va_list
############################################################################
# 7.3.1 String Objects
############################################################################
# These functions raise TypeError when expecting a string
# parameter and are called with a non-string parameter.
# PyStringObject
# This subtype of PyObject represents a Python bytes object.
# PyTypeObject PyBytes_Type
# This instance of PyTypeObject represents the Python bytes type;
# it is the same object as bytes and types.BytesType in the Python
# layer.
bint PyBytes_Check(object o)
# Return true if the object o is a string object or an instance of
# a subtype of the string type.
bint PyBytes_CheckExact(object o)
# Return true if the object o is a string object, but not an instance of a subtype of the string type.
bytes PyBytes_FromString(char *v)
# Return value: New reference.
# Return a new string object with the value v on success, and NULL
# on failure. The parameter v must not be NULL; it will not be
# checked.
bytes PyBytes_FromStringAndSize(char *v, Py_ssize_t len)
# Return value: New reference.
# Return a new string object with the value v and length len on
# success, and NULL on failure. If v is NULL, the contents of the
# string are uninitialized.
bytes PyBytes_FromFormat(char *format, ...)
# Return value: New reference.
# Take a C printf()-style format string and a variable number of
# arguments, calculate the size of the resulting Python string and
# return a string with the values formatted into it. The variable
# arguments must be C types and must correspond exactly to the
# format characters in the format string. The following format
# characters are allowed:
# Format Characters Type Comment
# %% n/a The literal % character.
# %c int A single character, represented as an C int.
# %d int Exactly equivalent to printf("%d").
# %u unsigned int Exactly equivalent to printf("%u").
# %ld long Exactly equivalent to printf("%ld").
# %lu unsigned long Exactly equivalent to printf("%lu").
# %zd Py_ssize_t Exactly equivalent to printf("%zd").
# %zu size_t Exactly equivalent to printf("%zu").
# %i int Exactly equivalent to printf("%i").
# %x int Exactly equivalent to printf("%x").
# %s char* A null-terminated C character array.
# %p void* The hex representation of a C pointer.
# Mostly equivalent to printf("%p") except that it is guaranteed to
# start with the literal 0x regardless of what the platform's printf
# yields.
# An unrecognized format character causes all the rest of the
# format string to be copied as-is to the result string, and any
# extra arguments discarded.
bytes PyBytes_FromFormatV(char *format, va_list vargs)
# Return value: New reference.
# Identical to PyBytes_FromFormat() except that it takes exactly two arguments.
Py_ssize_t PyBytes_Size(object string) except -1
# Return the length of the string in string object string.
Py_ssize_t PyBytes_GET_SIZE(object string)
# Macro form of PyBytes_Size() but without error checking.
char* PyBytes_AsString(object string) except NULL
# Return a NUL-terminated representation of the contents of
# string. The pointer refers to the internal buffer of string, not
# a copy. The data must not be modified in any way, unless the
# string was just created using PyBytes_FromStringAndSize(NULL,
# size). It must not be deallocated. If string is a Unicode
# object, this function computes the default encoding of string
# and operates on that. If string is not a string object at all,
# PyBytes_AsString() returns NULL and raises TypeError.
char* PyBytes_AS_STRING(object string)
# Macro form of PyBytes_AsString() but without error
# checking. Only string objects are supported; no Unicode objects
# should be passed.
int PyBytes_AsStringAndSize(object obj, char **buffer, Py_ssize_t *length) except -1
# Return a NULL-terminated representation of the contents of the
# object obj through the output variables buffer and length.
#
# The function accepts both string and Unicode objects as
# input. For Unicode objects it returns the default encoded
# version of the object. If length is NULL, the resulting buffer
# may not contain NUL characters; if it does, the function returns
# -1 and a TypeError is raised.
# The buffer refers to an internal string buffer of obj, not a
# copy. The data must not be modified in any way, unless the
# string was just created using PyBytes_FromStringAndSize(NULL,
# size). It must not be deallocated. If string is a Unicode
# object, this function computes the default encoding of string
# and operates on that. If string is not a string object at all,
# PyBytes_AsStringAndSize() returns -1 and raises TypeError.
void PyBytes_Concat(PyObject **string, object newpart)
# Create a new string object in *string containing the contents of
# newpart appended to string; the caller will own the new
# reference. The reference to the old value of string will be
# stolen. If the new string cannot be created, the old reference
# to string will still be discarded and the value of *string will
# be set to NULL; the appropriate exception will be set.
void PyBytes_ConcatAndDel(PyObject **string, object newpart)
# Create a new string object in *string containing the contents of
# newpart appended to string. This version decrements the
# reference count of newpart.
int _PyBytes_Resize(PyObject **string, Py_ssize_t newsize) except -1
# A way to resize a string object even though it is
# ``immutable''. Only use this to build up a brand new string
# object; don't use this if the string may already be known in
# other parts of the code. It is an error to call this function if
# the refcount on the input string object is not one. Pass the
# address of an existing string object as an lvalue (it may be
# written into), and the new size desired. On success, *string
# holds the resized string object and 0 is returned; the address
# in *string may differ from its input value. If the reallocation
# fails, the original string object at *string is deallocated,
# *string is set to NULL, a memory exception is set, and -1 is
# returned.
bytes PyBytes_Format(object format, object args)
# Return value: New reference. Return a new string object from
# format and args. Analogous to format % args. The args argument
# must be a tuple.
void PyBytes_InternInPlace(PyObject **string)
# Intern the argument *string in place. The argument must be the
# address of a pointer variable pointing to a Python string
# object. If there is an existing interned string that is the same
# as *string, it sets *string to it (decrementing the reference
# count of the old string object and incrementing the reference
# count of the interned string object), otherwise it leaves
# *string alone and interns it (incrementing its reference
# count). (Clarification: even though there is a lot of talk about
# reference counts, think of this function as
# reference-count-neutral; you own the object after the call if
# and only if you owned it before the call.)
bytes PyBytes_InternFromString(char *v)
# Return value: New reference.
# A combination of PyBytes_FromString() and
# PyBytes_InternInPlace(), returning either a new string object
# that has been interned, or a new (``owned'') reference to an
# earlier interned string object with the same value.
object PyBytes_Decode(char *s, Py_ssize_t size, char *encoding, char *errors)
# Return value: New reference.
# Create an object by decoding size bytes of the encoded buffer s
# using the codec registered for encoding. encoding and errors
# have the same meaning as the parameters of the same name in the
# unicode() built-in function. The codec to be used is looked up
# using the Python codec registry. Return NULL if an exception was
# raised by the codec.
object PyBytes_AsDecodedObject(object str, char *encoding, char *errors)
# Return value: New reference.
# Decode a string object by passing it to the codec registered for
# encoding and return the result as Python object. encoding and
# errors have the same meaning as the parameters of the same name
# in the string encode() method. The codec to be used is looked up
# using the Python codec registry. Return NULL if an exception was
# raised by the codec.
object PyBytes_Encode(char *s, Py_ssize_t size, char *encoding, char *errors)
# Return value: New reference.
# Encode the char buffer of the given size by passing it to the
# codec registered for encoding and return a Python
# object. encoding and errors have the same meaning as the
# parameters of the same name in the string encode() method. The
# codec to be used is looked up using the Python codec
# registry. Return NULL if an exception was raised by the codec.
object PyBytes_AsEncodedObject(object str, char *encoding, char *errors)
# Return value: New reference.
# Encode a string object using the codec registered for encoding
# and return the result as Python object. encoding and errors have
# the same meaning as the parameters of the same name in the
# string encode() method. The codec to be used is looked up using
# the Python codec registry. Return NULL if an exception was
# raised by the codec.

View file

@ -0,0 +1,35 @@
from .object cimport PyObject
cdef extern from "Python.h":
############################################################################
# Cell Objects
############################################################################
bint PyCell_Check(object ob)
# Return true if ob is a cell object; ob must not be NULL.
object PyCell_New(PyObject* ob)
# Return value: New reference.
# Create and return a new cell object containing the value ob. The
# parameter may be NULL.
object PyCell_Get(object cell)
# Return value: New reference.
# Return the contents of the cell object cell.
object PyCell_GET(object cell)
# Return value: Borrowed reference.
# Return the contents of the cell object cell, but without checking that
# cell is non-NULL and is a cell object.
int PyCell_Set(object cell, PyObject* value) except? -1
# Set the contents of the cell object cell to value. This releases the
# reference to any current content of the cell. value may be NULL. cell
# must be non-NULL; if it is not a cell object, -1 will be returned. On
# success, 0 will be returned.
void PyCell_SET(object cell, PyObject* value)
# Sets the value of the cell object cell to value. No reference counts are
# adjusted, and no checks are made for safety; cell must be non-NULL and
# must be a cell object.

View file

@ -0,0 +1,8 @@
cdef extern from "Python.h":
void PyEval_InitThreads()
# Initialize and acquire the global interpreter lock.
int PyEval_ThreadsInitialized()
# Returns a non-zero value if PyEval_InitThreads() has been called.

View file

@ -0,0 +1,36 @@
cdef extern from "Python.h":
###########################################################################
# Warning:
#
# The CObject API is deprecated as of Python 3.1. Please switch to
# the new Capsules API.
###########################################################################
int PyCObject_Check(object p)
# Return true if its argument is a PyCObject.
object PyCObject_FromVoidPtr(void* cobj, void (*destr)(void *))
# Return value: New reference.
#
# Create a PyCObject from the void * cobj. The destr function will
# be called when the object is reclaimed, unless it is NULL.
object PyCObject_FromVoidPtrAndDesc(void* cobj, void* desc, void (*destr)(void *, void *))
# Return value: New reference.
#
# Create a PyCObject from the void * cobj. The destr function will
# be called when the object is reclaimed. The desc argument can be
# used to pass extra callback data for the destructor function.
void* PyCObject_AsVoidPtr(object self) except? NULL
# Return the object void * that the PyCObject self was created with.
void* PyCObject_GetDesc(object self) except? NULL
# Return the description void * that the PyCObject self was created with.
int PyCObject_SetVoidPtr(object self, void* cobj) except 0
# Set the void pointer inside self to cobj. The PyCObject must not
# have an associated destructor. Return true on success, false on
# failure.

View file

@ -0,0 +1,121 @@
cdef extern from "Python.h":
###########################################################################
# Codec registry and support functions
###########################################################################
int PyCodec_Register(object search_function)
# Register a new codec search function.
# As side effect, this tries to load the encodings package, if not yet
# done, to make sure that it is always first in the list of search
# functions.
int PyCodec_KnownEncoding(const char *encoding)
# Return 1 or 0 depending on whether there is a registered codec for the
# given encoding. This function always succeeds.
object PyCodec_Encode(object o, const char *encoding, const char *errors)
# Return value: New reference.
# Generic codec based encoding API.
# o is passed through the encoder function found for the given encoding
# using the error handling method defined by errors. errors may be NULL
# to use the default method defined for the codec. Raises a LookupError
# if no encoder can be found.
object PyCodec_Decode(object o, const char *encoding, const char *errors)
# Return value: New reference.
# Generic codec based decoding API.
# o is passed through the decoder function found for the given encoding
# using the error handling method defined by errors. errors may be NULL
# to use the default method defined for the codec. Raises a LookupError
# if no encoder can be found.
# Codec lookup API
# In the following functions, the encoding string is looked up converted
# to all lower-case characters, which makes encodings looked up through
# this mechanism effectively case-insensitive. If no codec is found, a
# KeyError is set and NULL returned.
object PyCodec_Encoder(const char *encoding)
# Return value: New reference.
# Get an encoder function for the given encoding.
object PyCodec_Decoder(const char *encoding)
# Return value: New reference.
# Get a decoder function for the given encoding.
object PyCodec_IncrementalEncoder(const char *encoding, const char *errors)
# Return value: New reference.
# Get an IncrementalEncoder object for the given encoding.
object PyCodec_IncrementalDecoder(const char *encoding, const char *errors)
# Return value: New reference.
# Get an IncrementalDecoder object for the given encoding.
object PyCodec_StreamReader(const char *encoding, object stream, const char *errors)
# Return value: New reference.
# Get a StreamReader factory function for the given encoding.
object PyCodec_StreamWriter(const char *encoding, object stream, const char *errors)
# Return value: New reference.
# Get a StreamWriter factory function for the given encoding.
# Registry API for Unicode encoding error handlers
int PyCodec_RegisterError(const char *name, object error) except? -1
# Register the error handling callback function error under the given
# name. This callback function will be called by a codec when it
# encounters unencodable characters/undecodable bytes and name is
# specified as the error parameter in the call to the encode/decode
# function.
# The callback gets a single argument, an instance of
# UnicodeEncodeError, UnicodeDecodeError or UnicodeTranslateError that
# holds information about the problematic sequence of characters or bytes
# and their offset in the original string (see Unicode Exception Objects
# for functions to extract this information). The callback must either
# raise the given exception, or return a two-item tuple containing the
# replacement for the problematic sequence, and an integer giving the
# offset in the original string at which encoding/decoding should be
# resumed.
# Return 0 on success, -1 on error.
object PyCodec_LookupError(const char *name)
# Return value: New reference.
# Lookup the error handling callback function registered under name. As a
# special case NULL can be passed, in which case the error handling
# callback for "strict" will be returned.
object PyCodec_StrictErrors(object exc)
# Return value: Always NULL.
# Raise exc as an exception.
object PyCodec_IgnoreErrors(object exc)
# Return value: New reference.
# Ignore the unicode error, skipping the faulty input.
object PyCodec_ReplaceErrors(object exc)
# Return value: New reference.
# Replace the unicode encode error with "?" or "U+FFFD".
object PyCodec_XMLCharRefReplaceErrors(object exc)
# Return value: New reference.
# Replace the unicode encode error with XML character references.
object PyCodec_BackslashReplaceErrors(object exc)
# Return value: New reference.
# Replace the unicode encode error with backslash escapes ("\x", "\u"
# and "\U").
object PyCodec_NameReplaceErrors(object exc)
# Return value: New reference.
# Replace the unicode encode error with "\N{...}" escapes.
# New in version 3.5.

View file

@ -0,0 +1,50 @@
cdef extern from "Python.h":
ctypedef struct Py_complex:
double imag
double real
############################################################################
# 7.2.5.2 Complex Numbers as Python Objects
############################################################################
# PyComplexObject
# This subtype of PyObject represents a Python complex number object.
ctypedef class __builtin__.complex [object PyComplexObject]:
cdef Py_complex cval
# not making these available to keep them read-only:
#cdef double imag "cval.imag"
#cdef double real "cval.real"
# PyTypeObject PyComplex_Type
# This instance of PyTypeObject represents the Python complex
# number type. It is the same object as complex and
# types.ComplexType.
bint PyComplex_Check(object p)
# Return true if its argument is a PyComplexObject or a subtype of
# PyComplexObject.
bint PyComplex_CheckExact(object p)
# Return true if its argument is a PyComplexObject, but not a subtype of PyComplexObject.
object PyComplex_FromCComplex(Py_complex v)
# Return value: New reference.
# Create a new Python complex number object from a C Py_complex value.
object PyComplex_FromDoubles(double real, double imag)
# Return value: New reference.
# Return a new PyComplexObject object from real and imag.
double PyComplex_RealAsDouble(object op) except? -1
# Return the real part of op as a C double.
double PyComplex_ImagAsDouble(object op) except? -1
# Return the imaginary part of op as a C double.
Py_complex PyComplex_AsCComplex(object op)
# Return the Py_complex value of the complex number op.
#
# Returns (-1+0i) in case of an error

View file

@ -0,0 +1,36 @@
# From https://docs.python.org/3/c-api/conversion.html
from .object cimport PyObject
cdef extern from "Python.h":
ctypedef struct va_list
int PyOS_snprintf(char *str, size_t size, const char *format, ...)
# Output not more than size bytes to str according to the format
# string format and the extra arguments. See the Unix man page snprintf(2).
int PyOS_vsnprintf(char *str, size_t size, const char *format, va_list va)
# Output not more than size bytes to str according to the format
# string format and the variable argument list va. Unix man page vsnprintf(2).
double PyOS_string_to_double(const char *s, char **endptr, PyObject *overflow_exception) except? -1.0
# Convert a string s to a double, raising a Python exception on failure. The set of
# accepted strings corresponds to the set of strings accepted by Pythons float()
# constructor, except that s must not have leading or trailing whitespace.
# The conversion is independent of the current locale.
enum:
Py_DTSF_SIGN
Py_DTSF_ADD_DOT_0
Py_DTSF_ALT
char* PyOS_double_to_string(double val, char format_code, int precision, int flags, int *ptype) except NULL
# Convert a double val to a string using supplied format_code, precision, and flags.
int PyOS_stricmp(const char *s1, const char *s2)
# Case insensitive comparison of strings. The function works almost identically
# to strcmp() except that it ignores the case.
int PyOS_strnicmp(const char *s1, const char *s2, Py_ssize_t size)
# Case insensitive comparison of strings. The function works almost identically
# to strncmp() except that it ignores the case.

View file

@ -0,0 +1,212 @@
from cpython.object cimport PyObject
cdef extern from "Python.h":
ctypedef struct PyTypeObject:
pass
cdef extern from "datetime.h":
ctypedef extern class datetime.date[object PyDateTime_Date]:
pass
ctypedef extern class datetime.time[object PyDateTime_Time]:
pass
ctypedef extern class datetime.datetime[object PyDateTime_DateTime]:
pass
ctypedef extern class datetime.timedelta[object PyDateTime_Delta]:
pass
ctypedef extern class datetime.tzinfo[object PyDateTime_TZInfo]:
pass
ctypedef struct PyDateTime_Date:
pass
ctypedef struct PyDateTime_Time:
char hastzinfo
PyObject *tzinfo
ctypedef struct PyDateTime_DateTime:
char hastzinfo
PyObject *tzinfo
ctypedef struct PyDateTime_Delta:
int days
int seconds
int microseconds
# Define structure for C API.
ctypedef struct PyDateTime_CAPI:
# type objects
PyTypeObject *DateType
PyTypeObject *DateTimeType
PyTypeObject *TimeType
PyTypeObject *DeltaType
PyTypeObject *TZInfoType
# constructors
object (*Date_FromDate)(int, int, int, PyTypeObject*)
object (*DateTime_FromDateAndTime)(int, int, int, int, int, int, int, object, PyTypeObject*)
object (*Time_FromTime)(int, int, int, int, object, PyTypeObject*)
object (*Delta_FromDelta)(int, int, int, int, PyTypeObject*)
# constructors for the DB API
object (*DateTime_FromTimestamp)(object, object, object)
object (*Date_FromTimestamp)(object, object)
# Check type of the object.
bint PyDate_Check(object op)
bint PyDate_CheckExact(object op)
bint PyDateTime_Check(object op)
bint PyDateTime_CheckExact(object op)
bint PyTime_Check(object op)
bint PyTime_CheckExact(object op)
bint PyDelta_Check(object op)
bint PyDelta_CheckExact(object op)
bint PyTZInfo_Check(object op)
bint PyTZInfo_CheckExact(object op)
# Getters for date and datetime (C macros).
int PyDateTime_GET_YEAR(object o)
int PyDateTime_GET_MONTH(object o)
int PyDateTime_GET_DAY(object o)
# Getters for datetime (C macros).
int PyDateTime_DATE_GET_HOUR(object o)
int PyDateTime_DATE_GET_MINUTE(object o)
int PyDateTime_DATE_GET_SECOND(object o)
int PyDateTime_DATE_GET_MICROSECOND(object o)
# Getters for time (C macros).
int PyDateTime_TIME_GET_HOUR(object o)
int PyDateTime_TIME_GET_MINUTE(object o)
int PyDateTime_TIME_GET_SECOND(object o)
int PyDateTime_TIME_GET_MICROSECOND(object o)
# Getters for timedelta (C macros).
int PyDateTime_DELTA_GET_DAYS(object o)
int PyDateTime_DELTA_GET_SECONDS(object o)
int PyDateTime_DELTA_GET_MICROSECONDS(object o)
# PyDateTime CAPI object.
PyDateTime_CAPI *PyDateTimeAPI
void PyDateTime_IMPORT()
# Datetime C API initialization function.
# You have to call it before any usage of DateTime CAPI functions.
cdef inline void import_datetime():
PyDateTime_IMPORT
# Create date object using DateTime CAPI factory function.
# Note, there are no range checks for any of the arguments.
cdef inline object date_new(int year, int month, int day):
return PyDateTimeAPI.Date_FromDate(year, month, day, PyDateTimeAPI.DateType)
# Create time object using DateTime CAPI factory function
# Note, there are no range checks for any of the arguments.
cdef inline object time_new(int hour, int minute, int second, int microsecond, object tz):
return PyDateTimeAPI.Time_FromTime(hour, minute, second, microsecond, tz, PyDateTimeAPI.TimeType)
# Create datetime object using DateTime CAPI factory function.
# Note, there are no range checks for any of the arguments.
cdef inline object datetime_new(int year, int month, int day, int hour, int minute, int second, int microsecond, object tz):
return PyDateTimeAPI.DateTime_FromDateAndTime(year, month, day, hour, minute, second, microsecond, tz, PyDateTimeAPI.DateTimeType)
# Create timedelta object using DateTime CAPI factory function.
# Note, there are no range checks for any of the arguments.
cdef inline object timedelta_new(int days, int seconds, int useconds):
return PyDateTimeAPI.Delta_FromDelta(days, seconds, useconds, 1, PyDateTimeAPI.DeltaType)
# More recognizable getters for date/time/datetime/timedelta.
# There are no setters because datetime.h hasn't them.
# This is because of immutable nature of these objects by design.
# If you would change time/date/datetime/timedelta object you need to recreate.
# Get tzinfo of time
cdef inline object time_tzinfo(object o):
if (<PyDateTime_Time*>o).hastzinfo:
return <object>(<PyDateTime_Time*>o).tzinfo
else:
return None
# Get tzinfo of datetime
cdef inline object datetime_tzinfo(object o):
if (<PyDateTime_DateTime*>o).hastzinfo:
return <object>(<PyDateTime_DateTime*>o).tzinfo
else:
return None
# Get year of date
cdef inline int date_year(object o):
return PyDateTime_GET_YEAR(o)
# Get month of date
cdef inline int date_month(object o):
return PyDateTime_GET_MONTH(o)
# Get day of date
cdef inline int date_day(object o):
return PyDateTime_GET_DAY(o)
# Get year of datetime
cdef inline int datetime_year(object o):
return PyDateTime_GET_YEAR(o)
# Get month of datetime
cdef inline int datetime_month(object o):
return PyDateTime_GET_MONTH(o)
# Get day of datetime
cdef inline int datetime_day(object o):
return PyDateTime_GET_DAY(o)
# Get hour of time
cdef inline int time_hour(object o):
return PyDateTime_TIME_GET_HOUR(o)
# Get minute of time
cdef inline int time_minute(object o):
return PyDateTime_TIME_GET_MINUTE(o)
# Get second of time
cdef inline int time_second(object o):
return PyDateTime_TIME_GET_SECOND(o)
# Get microsecond of time
cdef inline int time_microsecond(object o):
return PyDateTime_TIME_GET_MICROSECOND(o)
# Get hour of datetime
cdef inline int datetime_hour(object o):
return PyDateTime_DATE_GET_HOUR(o)
# Get minute of datetime
cdef inline int datetime_minute(object o):
return PyDateTime_DATE_GET_MINUTE(o)
# Get second of datetime
cdef inline int datetime_second(object o):
return PyDateTime_DATE_GET_SECOND(o)
# Get microsecond of datetime
cdef inline int datetime_microsecond(object o):
return PyDateTime_DATE_GET_MICROSECOND(o)
# Get days of timedelta
cdef inline int timedelta_days(object o):
return (<PyDateTime_Delta*>o).days
# Get seconds of timedelta
cdef inline int timedelta_seconds(object o):
return (<PyDateTime_Delta*>o).seconds
# Get microseconds of timedelta
cdef inline int timedelta_microseconds(object o):
return (<PyDateTime_Delta*>o).microseconds

View file

@ -0,0 +1,165 @@
from .object cimport PyObject
cdef extern from "Python.h":
############################################################################
# 7.4.1 Dictionary Objects
############################################################################
# PyDictObject
#
# This subtype of PyObject represents a Python dictionary object
# (i.e. the 'dict' type).
# PyTypeObject PyDict_Type
#
# This instance of PyTypeObject represents the Python dictionary
# type. This is exposed to Python programs as dict and
# types.DictType.
bint PyDict_Check(object p)
# Return true if p is a dict object or an instance of a subtype of
# the dict type.
bint PyDict_CheckExact(object p)
# Return true if p is a dict object, but not an instance of a
# subtype of the dict type.
dict PyDict_New()
# Return value: New reference.
# Return a new empty dictionary, or NULL on failure.
object PyDictProxy_New(object dict)
# Return value: New reference.
# Return a proxy object for a mapping which enforces read-only
# behavior. This is normally used to create a proxy to prevent
# modification of the dictionary for non-dynamic class types.
void PyDict_Clear(object p)
# Empty an existing dictionary of all key-value pairs.
int PyDict_Contains(object p, object key) except -1
# Determine if dictionary p contains key. If an item in p is
# matches key, return 1, otherwise return 0. On error, return
# -1. This is equivalent to the Python expression "key in p".
dict PyDict_Copy(object p)
# Return value: New reference.
# Return a new dictionary that contains the same key-value pairs as p.
int PyDict_SetItem(object p, object key, object val) except -1
# Insert value into the dictionary p with a key of key. key must
# be hashable; if it isn't, TypeError will be raised. Return 0 on
# success or -1 on failure.
int PyDict_SetItemString(object p, const char *key, object val) except -1
# Insert value into the dictionary p using key as a key. key
# should be a char*. The key object is created using
# PyString_FromString(key). Return 0 on success or -1 on failure.
int PyDict_DelItem(object p, object key) except -1
# Remove the entry in dictionary p with key key. key must be
# hashable; if it isn't, TypeError is raised. Return 0 on success
# or -1 on failure.
int PyDict_DelItemString(object p, const char *key) except -1
# Remove the entry in dictionary p which has a key specified by
# the string key. Return 0 on success or -1 on failure.
PyObject* PyDict_GetItem(object p, object key)
# Return value: Borrowed reference.
# Return the object from dictionary p which has a key key. Return
# NULL if the key key is not present, but without setting an
# exception.
PyObject* PyDict_GetItemString(object p, const char *key)
# Return value: Borrowed reference.
# This is the same as PyDict_GetItem(), but key is specified as a
# char*, rather than a PyObject*.
list PyDict_Items(object p)
# Return value: New reference.
# Return a PyListObject containing all the items from the
# dictionary, as in the dictionary method items() (see the Python
# Library Reference).
list PyDict_Keys(object p)
# Return value: New reference.
# Return a PyListObject containing all the keys from the
# dictionary, as in the dictionary method keys() (see the Python
# Library Reference).
list PyDict_Values(object p)
# Return value: New reference.
# Return a PyListObject containing all the values from the
# dictionary p, as in the dictionary method values() (see the
# Python Library Reference).
Py_ssize_t PyDict_Size(object p) except -1
# Return the number of items in the dictionary. This is equivalent
# to "len(p)" on a dictionary.
int PyDict_Next(object p, Py_ssize_t *ppos, PyObject* *pkey, PyObject* *pvalue)
# Iterate over all key-value pairs in the dictionary p. The int
# referred to by ppos must be initialized to 0 prior to the first
# call to this function to start the iteration; the function
# returns true for each pair in the dictionary, and false once all
# pairs have been reported. The parameters pkey and pvalue should
# either point to PyObject* variables that will be filled in with
# each key and value, respectively, or may be NULL. Any references
# returned through them are borrowed. ppos should not be altered
# during iteration. Its value represents offsets within the
# internal dictionary structure, and since the structure is
# sparse, the offsets are not consecutive.
# For example:
#
#object key, *value;
#int pos = 0;
#
#while (PyDict_Next(self->dict, &pos, &key, &value)) {
# /* do something interesting with the values... */
# ...
#}
# The dictionary p should not be mutated during iteration. It is
# safe (since Python 2.1) to modify the values of the keys as you
# iterate over the dictionary, but only so long as the set of keys
# does not change. For example:
# object key, *value;
# int pos = 0;
# while (PyDict_Next(self->dict, &pos, &key, &value)) {
# int i = PyInt_AS_LONG(value) + 1;
# object o = PyInt_FromLong(i);
# if (o == NULL)
# return -1;
# if (PyDict_SetItem(self->dict, key, o) < 0) {
# Py_DECREF(o);
# return -1;
# }
# Py_DECREF(o);
# }
int PyDict_Merge(object a, object b, int override) except -1
# Iterate over mapping object b adding key-value pairs to
# dictionary a. b may be a dictionary, or any object supporting
# PyMapping_Keys() and PyObject_GetItem(). If override is true,
# existing pairs in a will be replaced if a matching key is found
# in b, otherwise pairs will only be added if there is not a
# matching key in a. Return 0 on success or -1 if an exception was
# raised.
int PyDict_Update(object a, object b) except -1
# This is the same as PyDict_Merge(a, b, 1) in C, or a.update(b)
# in Python. Return 0 on success or -1 if an exception was raised.
int PyDict_MergeFromSeq2(object a, object seq2, int override) except -1
# Update or merge into dictionary a, from the key-value pairs in
# seq2. seq2 must be an iterable object producing iterable objects
# of length 2, viewed as key-value pairs. In case of duplicate
# keys, the last wins if override is true, else the first
# wins. Return 0 on success or -1 if an exception was
# raised. Equivalent Python (except for the return value):
#
#def PyDict_MergeFromSeq2(a, seq2, override):
# for key, value in seq2:
# if override or key not in a:
# a[key] = value

View file

@ -0,0 +1,257 @@
from .object cimport PyObject
cdef extern from "Python.h":
#####################################################################
# 3. Exception Handling
#####################################################################
# The functions described in this chapter will let you handle and
# raise Python exceptions. It is important to understand some of
# the basics of Python exception handling. It works somewhat like
# the Unix errno variable: there is a global indicator (per
# thread) of the last error that occurred. Most functions don't
# clear this on success, but will set it to indicate the cause of
# the error on failure. Most functions also return an error
# indicator, usually NULL if they are supposed to return a
# pointer, or -1 if they return an integer (exception: the
# PyArg_*() functions return 1 for success and 0 for failure).
# When a function must fail because some function it called
# failed, it generally doesn't set the error indicator; the
# function it called already set it. It is responsible for either
# handling the error and clearing the exception or returning after
# cleaning up any resources it holds (such as object references or
# memory allocations); it should not continue normally if it is
# not prepared to handle the error. If returning due to an error,
# it is important to indicate to the caller that an error has been
# set. If the error is not handled or carefully propagated,
# additional calls into the Python/C API may not behave as
# intended and may fail in mysterious ways.
# The error indicator consists of three Python objects
# corresponding to the Python variables sys.exc_type,
# sys.exc_value and sys.exc_traceback. API functions exist to
# interact with the error indicator in various ways. There is a
# separate error indicator for each thread.
void PyErr_Print()
# Print a standard traceback to sys.stderr and clear the error
# indicator. Call this function only when the error indicator is
# set. (Otherwise it will cause a fatal error!)
PyObject* PyErr_Occurred()
# Return value: Borrowed reference.
# Test whether the error indicator is set. If set, return the
# exception type (the first argument to the last call to one of
# the PyErr_Set*() functions or to PyErr_Restore()). If not set,
# return NULL. You do not own a reference to the return value, so
# you do not need to Py_DECREF() it. Note: Do not compare the
# return value to a specific exception; use
# PyErr_ExceptionMatches() instead, shown below. (The comparison
# could easily fail since the exception may be an instance instead
# of a class, in the case of a class exception, or it may be a
# subclass of the expected exception.)
bint PyErr_ExceptionMatches(object exc)
# Equivalent to "PyErr_GivenExceptionMatches(PyErr_Occurred(),
# exc)". This should only be called when an exception is actually
# set; a memory access violation will occur if no exception has
# been raised.
bint PyErr_GivenExceptionMatches(object given, object exc)
# Return true if the given exception matches the exception in
# exc. If exc is a class object, this also returns true when given
# is an instance of a subclass. If exc is a tuple, all exceptions
# in the tuple (and recursively in subtuples) are searched for a
# match. If given is NULL, a memory access violation will occur.
void PyErr_NormalizeException(PyObject** exc, PyObject** val, PyObject** tb)
# Under certain circumstances, the values returned by
# PyErr_Fetch() below can be ``unnormalized'', meaning that *exc
# is a class object but *val is not an instance of the same
# class. This function can be used to instantiate the class in
# that case. If the values are already normalized, nothing
# happens. The delayed normalization is implemented to improve
# performance.
void PyErr_Clear()
# Clear the error indicator. If the error indicator is not set, there is no effect.
void PyErr_Fetch(PyObject** ptype, PyObject** pvalue, PyObject** ptraceback)
# Retrieve the error indicator into three variables whose
# addresses are passed. If the error indicator is not set, set all
# three variables to NULL. If it is set, it will be cleared and
# you own a reference to each object retrieved. The value and
# traceback object may be NULL even when the type object is
# not. Note: This function is normally only used by code that
# needs to handle exceptions or by code that needs to save and
# restore the error indicator temporarily.
void PyErr_Restore(PyObject* type, PyObject* value, PyObject* traceback)
# Set the error indicator from the three objects. If the error
# indicator is already set, it is cleared first. If the objects
# are NULL, the error indicator is cleared. Do not pass a NULL
# type and non-NULL value or traceback. The exception type should
# be a class. Do not pass an invalid exception type or
# value. (Violating these rules will cause subtle problems later.)
# This call takes away a reference to each object: you must own a
# reference to each object before the call and after the call you
# no longer own these references. (If you don't understand this,
# don't use this function. I warned you.) Note: This function is
# normally only used by code that needs to save and restore the
# error indicator temporarily; use PyErr_Fetch() to save the
# current exception state.
void PyErr_SetString(object type, char *message)
# This is the most common way to set the error indicator. The
# first argument specifies the exception type; it is normally one
# of the standard exceptions, e.g. PyExc_RuntimeError. You need
# not increment its reference count. The second argument is an
# error message; it is converted to a string object.
void PyErr_SetObject(object type, object value)
# This function is similar to PyErr_SetString() but lets you
# specify an arbitrary Python object for the ``value'' of the
# exception.
PyObject* PyErr_Format(object exception, char *format, ...) except NULL
# Return value: Always NULL.
# This function sets the error indicator and returns
# NULL. exception should be a Python exception (class, not an
# instance). format should be a string, containing format codes,
# similar to printf(). The width.precision before a format code is
# parsed, but the width part is ignored.
void PyErr_SetNone(object type)
# This is a shorthand for "PyErr_SetObject(type, Py_None)".
int PyErr_BadArgument() except 0
# This is a shorthand for "PyErr_SetString(PyExc_TypeError,
# message)", where message indicates that a built-in operation was
# invoked with an illegal argument. It is mostly for internal use.
PyObject* PyErr_NoMemory() except NULL
# Return value: Always NULL.
# This is a shorthand for "PyErr_SetNone(PyExc_MemoryError)"; it
# returns NULL so an object allocation function can write "return
# PyErr_NoMemory();" when it runs out of memory.
PyObject* PyErr_SetFromErrno(object type) except NULL
# Return value: Always NULL.
# This is a convenience function to raise an exception when a C
# library function has returned an error and set the C variable
# errno. It constructs a tuple object whose first item is the
# integer errno value and whose second item is the corresponding
# error message (gotten from strerror()), and then calls
# "PyErr_SetObject(type, object)". On Unix, when the errno value
# is EINTR, indicating an interrupted system call, this calls
# PyErr_CheckSignals(), and if that set the error indicator,
# leaves it set to that. The function always returns NULL, so a
# wrapper function around a system call can write "return
# PyErr_SetFromErrno(type);" when the system call returns an
# error.
PyObject* PyErr_SetFromErrnoWithFilenameObject(object type, object filenameObject) except NULL
# Similar to PyErr_SetFromErrno(), with the additional behavior
# that if filenameObject is not NULL, it is passed to the
# constructor of type as a third parameter.
# In the case of OSError exception, this is used to define
# the filename attribute of the exception instance.
PyObject* PyErr_SetFromErrnoWithFilename(object type, char *filename) except NULL
# Return value: Always NULL. Similar to PyErr_SetFromErrno(),
# with the additional behavior that if filename is not NULL, it is
# passed to the constructor of type as a third parameter. In the
# case of exceptions such as IOError and OSError, this is used to
# define the filename attribute of the exception instance.
PyObject* PyErr_SetFromWindowsErr(int ierr) except NULL
# Return value: Always NULL. This is a convenience function to
# raise WindowsError. If called with ierr of 0, the error code
# returned by a call to GetLastError() is used instead. It calls
# the Win32 function FormatMessage() to retrieve the Windows
# description of error code given by ierr or GetLastError(), then
# it constructs a tuple object whose first item is the ierr value
# and whose second item is the corresponding error message (gotten
# from FormatMessage()), and then calls
# "PyErr_SetObject(PyExc_WindowsError, object)". This function
# always returns NULL. Availability: Windows.
PyObject* PyErr_SetExcFromWindowsErr(object type, int ierr) except NULL
# Return value: Always NULL. Similar to
# PyErr_SetFromWindowsErr(), with an additional parameter
# specifying the exception type to be raised. Availability:
# Windows. New in version 2.3.
PyObject* PyErr_SetFromWindowsErrWithFilename(int ierr, char *filename) except NULL
# Return value: Always NULL. Similar to
# PyErr_SetFromWindowsErr(), with the additional behavior that if
# filename is not NULL, it is passed to the constructor of
# WindowsError as a third parameter. Availability: Windows.
PyObject* PyErr_SetExcFromWindowsErrWithFilename(object type, int ierr, char *filename) except NULL
# Return value: Always NULL.
# Similar to PyErr_SetFromWindowsErrWithFilename(), with an
# additional parameter specifying the exception type to be
# raised. Availability: Windows.
void PyErr_BadInternalCall()
# This is a shorthand for "PyErr_SetString(PyExc_TypeError,
# message)", where message indicates that an internal operation
# (e.g. a Python/C API function) was invoked with an illegal
# argument. It is mostly for internal use.
int PyErr_WarnEx(object category, char *message, int stacklevel) except -1
# Issue a warning message. The category argument is a warning
# category (see below) or NULL; the message argument is a message
# string. stacklevel is a positive number giving a number of stack
# frames; the warning will be issued from the currently executing
# line of code in that stack frame. A stacklevel of 1 is the
# function calling PyErr_WarnEx(), 2 is the function above that,
# and so forth.
int PyErr_WarnExplicit(object category, char *message, char *filename, int lineno, char *module, object registry) except -1
# Issue a warning message with explicit control over all warning
# attributes. This is a straightforward wrapper around the Python
# function warnings.warn_explicit(), see there for more
# information. The module and registry arguments may be set to
# NULL to get the default effect described there.
int PyErr_CheckSignals() except -1
# This function interacts with Python's signal handling. It checks
# whether a signal has been sent to the processes and if so,
# invokes the corresponding signal handler. If the signal module
# is supported, this can invoke a signal handler written in
# Python. In all cases, the default effect for SIGINT is to raise
# the KeyboardInterrupt exception. If an exception is raised the
# error indicator is set and the function returns 1; otherwise the
# function returns 0. The error indicator may or may not be
# cleared if it was previously set.
void PyErr_SetInterrupt() nogil
# This function simulates the effect of a SIGINT signal arriving
# -- the next time PyErr_CheckSignals() is called,
# KeyboardInterrupt will be raised. It may be called without
# holding the interpreter lock.
object PyErr_NewException(char *name, object base, object dict)
# Return value: New reference.
# This utility function creates and returns a new exception
# object. The name argument must be the name of the new exception,
# a C string of the form module.class. The base and dict arguments
# are normally NULL. This creates a class object derived from
# Exception (accessible in C as PyExc_Exception).
void PyErr_WriteUnraisable(object obj)
# This utility function prints a warning message to sys.stderr
# when an exception has been set but it is impossible for the
# interpreter to actually raise the exception. It is used, for
# example, when an exception occurs in an __del__() method.
#
# The function is called with a single argument obj that
# identifies the context in which the unraisable exception
# occurred. The repr of obj will be printed in the warning
# message.

View file

@ -0,0 +1,39 @@
cdef extern from "Python.h":
############################################################################
# 7.2.3
############################################################################
# PyFloatObject
#
# This subtype of PyObject represents a Python floating point object.
# PyTypeObject PyFloat_Type
#
# This instance of PyTypeObject represents the Python floating
# point type. This is the same object as float and
# types.FloatType.
bint PyFloat_Check(object p)
# Return true if its argument is a PyFloatObject or a subtype of
# PyFloatObject.
bint PyFloat_CheckExact(object p)
# Return true if its argument is a PyFloatObject, but not a
# subtype of PyFloatObject.
object PyFloat_FromString(object str, char **pend)
# Return value: New reference.
# Create a PyFloatObject object based on the string value in str,
# or NULL on failure. The pend argument is ignored. It remains
# only for backward compatibility.
object PyFloat_FromDouble(double v)
# Return value: New reference.
# Create a PyFloatObject object from v, or NULL on failure.
double PyFloat_AsDouble(object pyfloat) except? -1
# Return a C double representation of the contents of pyfloat.
double PyFloat_AS_DOUBLE(object pyfloat)
# Return a C double representation of the contents of pyfloat, but
# without error checking.

View file

@ -0,0 +1,65 @@
from .object cimport PyObject
cdef extern from "Python.h":
############################################################################
# 7.5.3 Function Objects
############################################################################
# There are a few functions specific to Python functions.
# PyFunctionObject
#
# The C structure used for functions.
# PyTypeObject PyFunction_Type
#
# This is an instance of PyTypeObject and represents the Python
# function type. It is exposed to Python programmers as
# types.FunctionType.
bint PyFunction_Check(object o)
# Return true if o is a function object (has type
# PyFunction_Type). The parameter must not be NULL.
object PyFunction_New(object code, object globals)
# Return value: New reference.
# Return a new function object associated with the code object
# code. globals must be a dictionary with the global variables
# accessible to the function.
# The function's docstring, name and __module__ are retrieved from
# the code object, the argument defaults and closure are set to
# NULL.
PyObject* PyFunction_GetCode(object op) except? NULL
# Return value: Borrowed reference.
# Return the code object associated with the function object op.
PyObject* PyFunction_GetGlobals(object op) except? NULL
# Return value: Borrowed reference.
# Return the globals dictionary associated with the function object op.
PyObject* PyFunction_GetModule(object op) except? NULL
# Return value: Borrowed reference.
# Return the __module__ attribute of the function object op. This
# is normally a string containing the module name, but can be set
# to any other object by Python code.
PyObject* PyFunction_GetDefaults(object op) except? NULL
# Return value: Borrowed reference.
# Return the argument default values of the function object
# op. This can be a tuple of arguments or NULL.
int PyFunction_SetDefaults(object op, object defaults) except -1
# Set the argument default values for the function object
# op. defaults must be Py_None or a tuple.
# Raises SystemError and returns -1 on failure.
PyObject* PyFunction_GetClosure(object op) except? NULL
# Return value: Borrowed reference.
# Return the closure associated with the function object op. This
# can be NULL or a tuple of cell objects.
int PyFunction_SetClosure(object op, object closure) except -1
# Set the closure associated with the function object op. closure
# must be Py_None or a tuple of cell objects.
# Raises SystemError and returns -1 on failure.

View file

@ -0,0 +1,25 @@
from .pystate cimport PyFrameObject
cdef extern from "Python.h":
###########################################################################
# Generator Objects
###########################################################################
bint PyGen_Check(object ob)
# Return true if ob is a generator object; ob must not be NULL.
bint PyGen_CheckExact(object ob)
# Return true if ob's type is PyGen_Type; ob must not be NULL.
object PyGen_New(PyFrameObject *frame)
# Return value: New reference.
# Create and return a new generator object based on the frame object. A
# reference to frame is stolen by this function. The argument must not be
# NULL.
object PyGen_NewWithQualName(PyFrameObject *frame, object name, object qualname)
# Return value: New reference.
# Create and return a new generator object based on the frame object, with
# __name__ and __qualname__ set to name and qualname. A reference to frame
# is stolen by this function. The frame argument must not be NULL.

View file

@ -0,0 +1,12 @@
cdef extern from "Python.h":
#####################################################################
# 5.5 Parsing arguments and building values
#####################################################################
ctypedef struct va_list
int PyArg_ParseTuple(object args, char *format, ...) except 0
int PyArg_VaParse(object args, char *format, va_list vargs) except 0
int PyArg_ParseTupleAndKeywords(object args, object kw, char *format, char *keywords[], ...) except 0
int PyArg_VaParseTupleAndKeywords(object args, object kw, char *format, char *keywords[], va_list vargs) except 0
int PyArg_Parse(object args, char *format, ...) except 0
int PyArg_UnpackTuple(object args, char *name, Py_ssize_t min, Py_ssize_t max, ...) except 0

View file

@ -0,0 +1,25 @@
cdef extern from "Python.h":
############################################################################
# 7.5.2 Instance Objects
############################################################################
# PyTypeObject PyInstance_Type
#
# Type object for class instances.
int PyInstance_Check(object obj)
# Return true if obj is an instance.
object PyInstance_New(object cls, object arg, object kw)
# Return value: New reference.
# Create a new instance of a specific class. The parameters arg
# and kw are used as the positional and keyword parameters to the
# object's constructor.
object PyInstance_NewRaw(object cls, object dict)
# Return value: New reference.
# Create a new instance of a specific class without calling its
# constructor. class is the class of new object. The dict
# parameter will be used as the object's __dict__; if NULL, a new
# dictionary will be created for the instance.

View file

@ -0,0 +1,89 @@
cdef extern from "Python.h":
ctypedef unsigned long long PY_LONG_LONG
############################################################################
# Integer Objects
############################################################################
# PyTypeObject PyInt_Type
# This instance of PyTypeObject represents the Python plain
# integer type. This is the same object as int and types.IntType.
bint PyInt_Check(object o)
# Return true if o is of type PyInt_Type or a subtype of
# PyInt_Type.
bint PyInt_CheckExact(object o)
# Return true if o is of type PyInt_Type, but not a subtype of
# PyInt_Type.
object PyInt_FromString(char *str, char **pend, int base)
# Return value: New reference.
# Return a new PyIntObject or PyLongObject based on the string
# value in str, which is interpreted according to the radix in
# base. If pend is non-NULL, *pend will point to the first
# character in str which follows the representation of the
# number. If base is 0, the radix will be determined based on the
# leading characters of str: if str starts with '0x' or '0X',
# radix 16 will be used; if str starts with '0', radix 8 will be
# used; otherwise radix 10 will be used. If base is not 0, it must
# be between 2 and 36, inclusive. Leading spaces are ignored. If
# there are no digits, ValueError will be raised. If the string
# represents a number too large to be contained within the
# machine's long int type and overflow warnings are being
# suppressed, a PyLongObject will be returned. If overflow
# warnings are not being suppressed, NULL will be returned in this
# case.
object PyInt_FromLong(long ival)
# Return value: New reference.
# Create a new integer object with a value of ival.
# The current implementation keeps an array of integer objects for
# all integers between -5 and 256, when you create an int in that
# range you actually just get back a reference to the existing
# object. So it should be possible to change the value of 1. I
# suspect the behaviour of Python in this case is undefined. :-)
object PyInt_FromSsize_t(Py_ssize_t ival)
# Return value: New reference.
# Create a new integer object with a value of ival. If the value
# is larger than LONG_MAX or smaller than LONG_MIN, a long integer
# object is returned.
object PyInt_FromSize_t(size_t ival)
# Return value: New reference.
# Create a new integer object with a value of ival. If the value
# exceeds LONG_MAX, a long integer object is returned.
long PyInt_AsLong(object io) except? -1
# Will first attempt to cast the object to a PyIntObject, if it is
# not already one, and then return its value. If there is an
# error, -1 is returned, and the caller should check
# PyErr_Occurred() to find out whether there was an error, or
# whether the value just happened to be -1.
long PyInt_AS_LONG(object io)
# Return the value of the object io. No error checking is performed.
unsigned long PyInt_AsUnsignedLongMask(object io) except? -1
# Will first attempt to cast the object to a PyIntObject or
# PyLongObject, if it is not already one, and then return its
# value as unsigned long. This function does not check for
# overflow.
PY_LONG_LONG PyInt_AsUnsignedLongLongMask(object io) except? -1
# Will first attempt to cast the object to a PyIntObject or
# PyLongObject, if it is not already one, and then return its
# value as unsigned long long, without checking for overflow.
Py_ssize_t PyInt_AsSsize_t(object io) except? -1
# Will first attempt to cast the object to a PyIntObject or
# PyLongObject, if it is not already one, and then return its
# value as Py_ssize_t.
long PyInt_GetMax()
# Return the system's idea of the largest integer it can handle
# (LONG_MAX, as defined in the system header files).
int PyInt_ClearFreeList()
# Clear the integer free list. Return the number of items that could not be freed.
# New in version 2.6.

View file

@ -0,0 +1,36 @@
cdef extern from "Python.h":
############################################################################
# 6.5 Iterator Protocol
############################################################################
bint PyIter_Check(object o)
# Return true if the object o supports the iterator protocol.
object PyIter_Next(object o)
# Return value: New reference.
# Return the next value from the iteration o. If the object is an
# iterator, this retrieves the next value from the iteration, and
# returns NULL with no exception set if there are no remaining
# items. If the object is not an iterator, TypeError is raised, or
# if there is an error in retrieving the item, returns NULL and
# passes along the exception.
# To write a loop which iterates over an iterator, the C code should look something like this:
# PyObject *iterator = PyObject_GetIter(obj);
# PyObject *item;
# if (iterator == NULL) {
# /* propagate error */
# }
# while (item = PyIter_Next(iterator)) {
# /* do something with item */
# ...
# /* release reference when done */
# Py_DECREF(item);
# }
# Py_DECREF(iterator);
# if (PyErr_Occurred()) {
# /* propagate error */
# }
# else {
# /* continue doing useful work */
# }

View file

@ -0,0 +1,24 @@
cdef extern from "Python.h":
###########################################################################
# Iterator Objects
###########################################################################
bint PySeqIter_Check(object op)
# Return true if the type of op is PySeqIter_Type.
object PySeqIter_New(object seq)
# Return value: New reference.
# Return an iterator that works with a general sequence object, seq. The
# iteration ends when the sequence raises IndexError for the subscripting
# operation.
bint PyCallIter_Check(object op)
# Return true if the type of op is PyCallIter_Type.
object PyCallIter_New(object callable, object sentinel)
# Return value: New reference.
# Return a new iterator. The first parameter, callable, can be any Python
# callable object that can be called with no parameters; each call to it
# should return the next item in the iteration. When callable returns a
# value equal to sentinel, the iteration will be terminated.

View file

@ -0,0 +1,92 @@
from .object cimport PyObject
cdef extern from "Python.h":
############################################################################
# Lists
############################################################################
list PyList_New(Py_ssize_t len)
# Return a new list of length len on success, or NULL on failure.
#
# Note: If length is greater than zero, the returned list object's
# items are set to NULL. Thus you cannot use abstract API
# functions such as PySequence_SetItem() or expose the object to
# Python code before setting all items to a real object with
# PyList_SetItem().
bint PyList_Check(object p)
# Return true if p is a list object or an instance of a subtype of
# the list type.
bint PyList_CheckExact(object p)
# Return true if p is a list object, but not an instance of a
# subtype of the list type.
Py_ssize_t PyList_Size(object list) except -1
# Return the length of the list object in list; this is equivalent
# to "len(list)" on a list object.
Py_ssize_t PyList_GET_SIZE(object list)
# Macro form of PyList_Size() without error checking.
PyObject* PyList_GetItem(object list, Py_ssize_t index) except NULL
# Return value: Borrowed reference.
# Return the object at position pos in the list pointed to by
# p. The position must be positive, indexing from the end of the
# list is not supported. If pos is out of bounds, return NULL and
# set an IndexError exception.
PyObject* PyList_GET_ITEM(object list, Py_ssize_t i)
# Return value: Borrowed reference.
# Macro form of PyList_GetItem() without error checking.
int PyList_SetItem(object list, Py_ssize_t index, object item) except -1
# Set the item at index index in list to item. Return 0 on success
# or -1 on failure. Note: This function ``steals'' a reference to
# item and discards a reference to an item already in the list at
# the affected position.
void PyList_SET_ITEM(object list, Py_ssize_t i, object o)
# Macro form of PyList_SetItem() without error checking. This is
# normally only used to fill in new lists where there is no
# previous content. Note: This function ``steals'' a reference to
# item, and, unlike PyList_SetItem(), does not discard a reference
# to any item that it being replaced; any reference in list at
# position i will be *leaked*.
int PyList_Insert(object list, Py_ssize_t index, object item) except -1
# Insert the item item into list list in front of index
# index. Return 0 if successful; return -1 and set an exception if
# unsuccessful. Analogous to list.insert(index, item).
int PyList_Append(object list, object item) except -1
# Append the object item at the end of list list. Return 0 if
# successful; return -1 and set an exception if
# unsuccessful. Analogous to list.append(item).
list PyList_GetSlice(object list, Py_ssize_t low, Py_ssize_t high)
# Return value: New reference.
# Return a list of the objects in list containing the objects
# between low and high. Return NULL and set an exception if
# unsuccessful. Analogous to list[low:high].
int PyList_SetSlice(object list, Py_ssize_t low, Py_ssize_t high, object itemlist) except -1
# Set the slice of list between low and high to the contents of
# itemlist. Analogous to list[low:high] = itemlist. The itemlist
# may be NULL, indicating the assignment of an empty list (slice
# deletion). Return 0 on success, -1 on failure.
int PyList_Sort(object list) except -1
# Sort the items of list in place. Return 0 on success, -1 on
# failure. This is equivalent to "list.sort()".
int PyList_Reverse(object list) except -1
# Reverse the items of list in place. Return 0 on success, -1 on
# failure. This is the equivalent of "list.reverse()".
tuple PyList_AsTuple(object list)
# Return value: New reference.
# Return a new tuple object containing the contents of list;
# equivalent to "tuple(list)".

View file

@ -0,0 +1,149 @@
cdef extern from "Python.h":
ctypedef long long PY_LONG_LONG
ctypedef unsigned long long uPY_LONG_LONG "unsigned PY_LONG_LONG"
############################################################################
# 7.2.3 Long Integer Objects
############################################################################
# PyLongObject
#
# This subtype of PyObject represents a Python long integer object.
# PyTypeObject PyLong_Type
#
# This instance of PyTypeObject represents the Python long integer
# type. This is the same object as long and types.LongType.
bint PyLong_Check(object p)
# Return true if its argument is a PyLongObject or a subtype of PyLongObject.
bint PyLong_CheckExact(object p)
# Return true if its argument is a PyLongObject, but not a subtype of PyLongObject.
object PyLong_FromLong(long v)
# Return value: New reference.
# Return a new PyLongObject object from v, or NULL on failure.
object PyLong_FromUnsignedLong(unsigned long v)
# Return value: New reference.
# Return a new PyLongObject object from a C unsigned long, or NULL on failure.
object PyLong_FromSsize_t(Py_ssize_t v)
# Return value: New reference.
# Return a new PyLongObject object from a C Py_ssize_t, or NULL on failure.)
object PyLong_FromSize_t(size_t v)
# Return value: New reference.
# Return a new PyLongObject object from a C size_t, or NULL on failure.
object PyLong_FromLongLong(PY_LONG_LONG v)
# Return value: New reference.
# Return a new PyLongObject object from a C long long, or NULL on failure.
object PyLong_FromUnsignedLongLong(uPY_LONG_LONG v)
# Return value: New reference.
# Return a new PyLongObject object from a C unsigned long long, or NULL on failure.
object PyLong_FromDouble(double v)
# Return value: New reference.
# Return a new PyLongObject object from the integer part of v, or NULL on failure.
object PyLong_FromString(char *str, char **pend, int base)
# Return value: New reference.
# Return a new PyLongObject based on the string value in str,
# which is interpreted according to the radix in base. If pend is
# non-NULL, *pend will point to the first character in str which
# follows the representation of the number. If base is 0, the
# radix will be determined based on the leading characters of str:
# if str starts with '0x' or '0X', radix 16 will be used; if str
# starts with '0', radix 8 will be used; otherwise radix 10 will
# be used. If base is not 0, it must be between 2 and 36,
# inclusive. Leading spaces are ignored. If there are no digits,
# ValueError will be raised.
object PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
# Return value: New reference.
# Convert a sequence of Unicode digits to a Python long integer
# value. The first parameter, u, points to the first character of
# the Unicode string, length gives the number of characters, and
# base is the radix for the conversion. The radix must be in the
# range [2, 36]; if it is out of range, ValueError will be
# raised.
# object PyLong_FromUnicodeObject(object u, int base)
# Convert a sequence of Unicode digits in the string u to a Python integer
# value. The Unicode string is first encoded to a byte string using
# PyUnicode_EncodeDecimal() and then converted using PyLong_FromString().
# New in version 3.3.
object PyLong_FromVoidPtr(void *p)
# Return value: New reference.
# Create a Python integer or long integer from the pointer p. The
# pointer value can be retrieved from the resulting value using
# PyLong_AsVoidPtr(). If the integer is larger than LONG_MAX, a
# positive long integer is returned.
long PyLong_AsLong(object pylong) except? -1
# Return a C long representation of the contents of pylong. If
# pylong is greater than LONG_MAX, an OverflowError is raised.
# long PyLong_AsLongAndOverflow(object pylong, int *overflow) except? -1
# Return a C long representation of the contents of pylong. If pylong is
# greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or -1,
# respectively, and return -1; otherwise, set *overflow to 0. If any other
# exception occurs (for example a TypeError or MemoryError), then -1 will
# be returned and *overflow will be 0.
# New in version 2.7.
# PY_LONG_LONG PyLong_AsLongLongAndOverflow(object pylong, int *overflow) except? -1
# Return a C long long representation of the contents of pylong. If pylong
# is greater than PY_LLONG_MAX or less than PY_LLONG_MIN, set *overflow to
# 1 or -1, respectively, and return -1; otherwise, set *overflow to 0. If
# any other exception occurs (for example a TypeError or MemoryError), then
# -1 will be returned and *overflow will be 0.
# New in version 2.7.
Py_ssize_t PyLong_AsSsize_t(object pylong) except? -1
# Return a C Py_ssize_t representation of the contents of pylong. If pylong
# is greater than PY_SSIZE_T_MAX, an OverflowError is raised and -1 will be
# returned.
unsigned long PyLong_AsUnsignedLong(object pylong) except? -1
# Return a C unsigned long representation of the contents of
# pylong. If pylong is greater than ULONG_MAX, an OverflowError is
# raised.
PY_LONG_LONG PyLong_AsLongLong(object pylong) except? -1
# Return a C long long from a Python long integer. If pylong
# cannot be represented as a long long, an OverflowError will be
# raised.
uPY_LONG_LONG PyLong_AsUnsignedLongLong(object pylong) except? -1
#unsigned PY_LONG_LONG PyLong_AsUnsignedLongLong(object pylong)
# Return a C unsigned long long from a Python long integer. If
# pylong cannot be represented as an unsigned long long, an
# OverflowError will be raised if the value is positive, or a
# TypeError will be raised if the value is negative.
unsigned long PyLong_AsUnsignedLongMask(object io) except? -1
# Return a C unsigned long from a Python long integer, without
# checking for overflow.
uPY_LONG_LONG PyLong_AsUnsignedLongLongMask(object io) except? -1
#unsigned PY_LONG_LONG PyLong_AsUnsignedLongLongMask(object io)
# Return a C unsigned long long from a Python long integer,
# without checking for overflow.
double PyLong_AsDouble(object pylong) except? -1.0
# Return a C double representation of the contents of pylong. If
# pylong cannot be approximately represented as a double, an
# OverflowError exception is raised and -1.0 will be returned.
void* PyLong_AsVoidPtr(object pylong) except? NULL
# Convert a Python integer or long integer pylong to a C void
# pointer. If pylong cannot be converted, an OverflowError will be
# raised. This is only assured to produce a usable void pointer
# for values created with PyLong_FromVoidPtr(). For values outside
# 0..LONG_MAX, both signed and unsigned integers are accepted.

View file

@ -0,0 +1,19 @@
# Internals of the "long" type (Python 2) or "int" type (Python 3).
cdef extern from "Python.h":
"""
#if PY_MAJOR_VERSION < 3
#include "longintrepr.h"
#endif
"""
ctypedef unsigned int digit
ctypedef int sdigit # Python >= 2.7 only
ctypedef class __builtin__.py_long [object PyLongObject]:
cdef digit* ob_digit
cdef py_long _PyLong_New(Py_ssize_t s)
cdef long PyLong_SHIFT
cdef digit PyLong_BASE
cdef digit PyLong_MASK

View file

@ -0,0 +1,64 @@
cdef extern from "Python.h":
############################################################################
# 6.4 Mapping Protocol
############################################################################
bint PyMapping_Check(object o)
# Return 1 if the object provides mapping protocol, and 0
# otherwise. This function always succeeds.
Py_ssize_t PyMapping_Length(object o) except -1
# Returns the number of keys in object o on success, and -1 on
# failure. For objects that do not provide mapping protocol, this
# is equivalent to the Python expression "len(o)".
int PyMapping_DelItemString(object o, char *key) except -1
# Remove the mapping for object key from the object o. Return -1
# on failure. This is equivalent to the Python statement "del
# o[key]".
int PyMapping_DelItem(object o, object key) except -1
# Remove the mapping for object key from the object o. Return -1
# on failure. This is equivalent to the Python statement "del
# o[key]".
bint PyMapping_HasKeyString(object o, char *key)
# On success, return 1 if the mapping object has the key key and 0
# otherwise. This is equivalent to the Python expression
# "o.has_key(key)". This function always succeeds.
bint PyMapping_HasKey(object o, object key)
# Return 1 if the mapping object has the key key and 0
# otherwise. This is equivalent to the Python expression
# "o.has_key(key)". This function always succeeds.
object PyMapping_Keys(object o)
# Return value: New reference.
# On success, return a list of the keys in object o. On failure,
# return NULL. This is equivalent to the Python expression
# "o.keys()".
object PyMapping_Values(object o)
# Return value: New reference.
# On success, return a list of the values in object o. On failure,
# return NULL. This is equivalent to the Python expression
# "o.values()".
object PyMapping_Items(object o)
# Return value: New reference.
# On success, return a list of the items in object o, where each
# item is a tuple containing a key-value pair. On failure, return
# NULL. This is equivalent to the Python expression "o.items()".
object PyMapping_GetItemString(object o, char *key)
# Return value: New reference.
# Return element of o corresponding to the object key or NULL on
# failure. This is the equivalent of the Python expression
# "o[key]".
int PyMapping_SetItemString(object o, char *key, object v) except -1
# Map the object key to the value v in object o. Returns -1 on
# failure. This is the equivalent of the Python statement "o[key]
# = v".

View file

@ -0,0 +1,111 @@
cdef extern from "Python.h":
#####################################################################
# 9.2 Memory Interface
#####################################################################
# You are definitely *supposed* to use these: "In most situations,
# however, it is recommended to allocate memory from the Python
# heap specifically because the latter is under control of the
# Python memory manager. For example, this is required when the
# interpreter is extended with new object types written in
# C. Another reason for using the Python heap is the desire to
# inform the Python memory manager about the memory needs of the
# extension module. Even when the requested memory is used
# exclusively for internal, highly-specific purposes, delegating
# all memory requests to the Python memory manager causes the
# interpreter to have a more accurate image of its memory
# footprint as a whole. Consequently, under certain circumstances,
# the Python memory manager may or may not trigger appropriate
# actions, like garbage collection, memory compaction or other
# preventive procedures. Note that by using the C library
# allocator as shown in the previous example, the allocated memory
# for the I/O buffer escapes completely the Python memory
# manager."
# The following function sets, modeled after the ANSI C standard,
# but specifying behavior when requesting zero bytes, are
# available for allocating and releasing memory from the Python
# heap:
void* PyMem_RawMalloc(size_t n) nogil
void* PyMem_Malloc(size_t n)
# Allocates n bytes and returns a pointer of type void* to the
# allocated memory, or NULL if the request fails. Requesting zero
# bytes returns a distinct non-NULL pointer if possible, as if
# PyMem_Malloc(1) had been called instead. The memory will not
# have been initialized in any way.
void* PyMem_RawRealloc(void *p, size_t n) nogil
void* PyMem_Realloc(void *p, size_t n)
# Resizes the memory block pointed to by p to n bytes. The
# contents will be unchanged to the minimum of the old and the new
# sizes. If p is NULL, the call is equivalent to PyMem_Malloc(n);
# else if n is equal to zero, the memory block is resized but is
# not freed, and the returned pointer is non-NULL. Unless p is
# NULL, it must have been returned by a previous call to
# PyMem_Malloc() or PyMem_Realloc().
void PyMem_RawFree(void *p) nogil
void PyMem_Free(void *p)
# Frees the memory block pointed to by p, which must have been
# returned by a previous call to PyMem_Malloc() or
# PyMem_Realloc(). Otherwise, or if PyMem_Free(p) has been called
# before, undefined behavior occurs. If p is NULL, no operation is
# performed.
# The following type-oriented macros are provided for
# convenience. Note that TYPE refers to any C type.
# TYPE* PyMem_New(TYPE, size_t n)
# Same as PyMem_Malloc(), but allocates (n * sizeof(TYPE)) bytes
# of memory. Returns a pointer cast to TYPE*. The memory will not
# have been initialized in any way.
# TYPE* PyMem_Resize(void *p, TYPE, size_t n)
# Same as PyMem_Realloc(), but the memory block is resized to (n *
# sizeof(TYPE)) bytes. Returns a pointer cast to TYPE*.
void PyMem_Del(void *p)
# Same as PyMem_Free().
# In addition, the following macro sets are provided for calling
# the Python memory allocator directly, without involving the C
# API functions listed above. However, note that their use does
# not preserve binary compatibility across Python versions and is
# therefore deprecated in extension modules.
# PyMem_MALLOC(), PyMem_REALLOC(), PyMem_FREE().
# PyMem_NEW(), PyMem_RESIZE(), PyMem_DEL().
#####################################################################
# Raw object memory interface
#####################################################################
# Functions to call the same malloc/realloc/free as used by Python's
# object allocator. If WITH_PYMALLOC is enabled, these may differ from
# the platform malloc/realloc/free. The Python object allocator is
# designed for fast, cache-conscious allocation of many "small" objects,
# and with low hidden memory overhead.
#
# PyObject_Malloc(0) returns a unique non-NULL pointer if possible.
#
# PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n).
# PyObject_Realloc(p != NULL, 0) does not return NULL, or free the memory
# at p.
#
# Returned pointers must be checked for NULL explicitly; no action is
# performed on failure other than to return NULL (no warning it printed, no
# exception is set, etc).
#
# For allocating objects, use PyObject_{New, NewVar} instead whenever
# possible. The PyObject_{Malloc, Realloc, Free} family is exposed
# so that you can exploit Python's small-block allocator for non-object
# uses. If you must use these routines to allocate object memory, make sure
# the object gets initialized via PyObject_{Init, InitVar} after obtaining
# the raw memory.
void* PyObject_Malloc(size_t size)
void* PyObject_Calloc(size_t nelem, size_t elsize)
void* PyObject_Realloc(void *ptr, size_t new_size)
void PyObject_Free(void *ptr)

View file

@ -0,0 +1,50 @@
cdef extern from "Python.h":
###########################################################################
# MemoryView Objects
###########################################################################
# A memoryview object exposes the C level buffer interface as a Python
# object which can then be passed around like any other object
object PyMemoryView_FromObject(object obj)
# Return value: New reference.
# Create a memoryview object from an object that provides the buffer
# interface. If obj supports writable buffer exports, the memoryview object
# will be read/write, otherwise it may be either read-only or read/write at
# the discretion of the exporter.
object PyMemoryView_FromMemory(char *mem, Py_ssize_t size, int flags)
# Return value: New reference.
# Create a memoryview object using mem as the underlying buffer. flags can
# be one of PyBUF_READ or PyBUF_WRITE.
# New in version 3.3.
object PyMemoryView_FromBuffer(Py_buffer *view)
# Return value: New reference.
# Create a memoryview object wrapping the given buffer structure view. For
# simple byte buffers, PyMemoryView_FromMemory() is the preferred function.
object PyMemoryView_GetContiguous(object obj,
int buffertype,
char order)
# Return value: New reference.
# Create a memoryview object to a contiguous chunk of memory (in either C
# or Fortran order) from an object that defines the buffer interface. If
# memory is contiguous, the memoryview object points to the original
# memory. Otherwise, a copy is made and the memoryview points to a new
# bytes object.
bint PyMemoryView_Check(object obj)
# Return true if the object obj is a memoryview object. It is not currently
# allowed to create subclasses of memoryview.
Py_buffer *PyMemoryView_GET_BUFFER(object mview)
# Return a pointer to the memoryviews private copy of the exporters
# buffer. mview must be a memoryview instance; this macro doesnt check its
# type, you must do it yourself or you will risk crashes.
Py_buffer *PyMemoryView_GET_BASE(object mview)
# Return either a pointer to the exporting object that the memoryview is
# based on or NULL if the memoryview has been created by one of the
# functions PyMemoryView_FromMemory() or PyMemoryView_FromBuffer(). mview
# must be a memoryview instance.

View file

@ -0,0 +1,49 @@
from .object cimport PyObject
cdef extern from "Python.h":
############################################################################
# 7.5.4 Method Objects
############################################################################
# There are some useful functions that are useful for working with method objects.
# PyTypeObject PyMethod_Type
# This instance of PyTypeObject represents the Python method type. This is exposed to Python programs as types.MethodType.
bint PyMethod_Check(object o)
# Return true if o is a method object (has type
# PyMethod_Type). The parameter must not be NULL.
object PyMethod_New(object func, object self, object cls)
# Return value: New reference.
# Return a new method object, with func being any callable object;
# this is the function that will be called when the method is
# called. If this method should be bound to an instance, self
# should be the instance and class should be the class of self,
# otherwise self should be NULL and class should be the class
# which provides the unbound method..
PyObject* PyMethod_Class(object meth) except NULL
# Return value: Borrowed reference.
# Return the class object from which the method meth was created;
# if this was created from an instance, it will be the class of
# the instance.
PyObject* PyMethod_GET_CLASS(object meth)
# Return value: Borrowed reference.
# Macro version of PyMethod_Class() which avoids error checking.
PyObject* PyMethod_Function(object meth) except NULL
# Return value: Borrowed reference.
# Return the function object associated with the method meth.
PyObject* PyMethod_GET_FUNCTION(object meth)
# Return value: Borrowed reference.
# Macro version of PyMethod_Function() which avoids error checking.
PyObject* PyMethod_Self(object meth) except? NULL
# Return value: Borrowed reference.
# Return the instance associated with the method meth if it is bound, otherwise return NULL.
PyObject* PyMethod_GET_SELF(object meth)
# Return value: Borrowed reference.
# Macro version of PyMethod_Self() which avoids error checking.

View file

@ -0,0 +1,188 @@
from .object cimport PyObject
cdef extern from "Python.h":
ctypedef struct _inittab
#####################################################################
# 5.3 Importing Modules
#####################################################################
object PyImport_ImportModule(const char *name)
# Return value: New reference.
# This is a simplified interface to PyImport_ImportModuleEx()
# below, leaving the globals and locals arguments set to
# NULL. When the name argument contains a dot (when it specifies a
# submodule of a package), the fromlist argument is set to the
# list ['*'] so that the return value is the named module rather
# than the top-level package containing it as would otherwise be
# the case. (Unfortunately, this has an additional side effect
# when name in fact specifies a subpackage instead of a submodule:
# the submodules specified in the package's __all__ variable are
# loaded.) Return a new reference to the imported module, or NULL
# with an exception set on failure.
object PyImport_ImportModuleEx(const char *name, object globals, object locals, object fromlist)
# Return value: New reference.
# Import a module. This is best described by referring to the
# built-in Python function __import__(), as the standard
# __import__() function calls this function directly.
# The return value is a new reference to the imported module or
# top-level package, or NULL with an exception set on failure
# (before Python 2.4, the module may still be created in this
# case). Like for __import__(), the return value when a submodule
# of a package was requested is normally the top-level package,
# unless a non-empty fromlist was given. Changed in version 2.4:
# failing imports remove incomplete module objects.
object PyImport_ImportModuleLevel(char *name, object globals, object locals, object fromlist, int level)
# Return value: New reference.
# Import a module. This is best described by referring to the
# built-in Python function __import__(), as the standard
# __import__() function calls this function directly.
# The return value is a new reference to the imported module or
# top-level package, or NULL with an exception set on failure. Like
# for __import__(), the return value when a submodule of a package
# was requested is normally the top-level package, unless a
# non-empty fromlist was given.
object PyImport_Import(object name)
# Return value: New reference.
# This is a higher-level interface that calls the current ``import
# hook function''. It invokes the __import__() function from the
# __builtins__ of the current globals. This means that the import
# is done using whatever import hooks are installed in the current
# environment, e.g. by rexec or ihooks.
object PyImport_ReloadModule(object m)
# Return value: New reference.
# Reload a module. This is best described by referring to the
# built-in Python function reload(), as the standard reload()
# function calls this function directly. Return a new reference to
# the reloaded module, or NULL with an exception set on failure
# (the module still exists in this case).
PyObject* PyImport_AddModule(const char *name) except NULL
# Return value: Borrowed reference.
# Return the module object corresponding to a module name. The
# name argument may be of the form package.module. First check the
# modules dictionary if there's one there, and if not, create a
# new one and insert it in the modules dictionary. Return NULL
# with an exception set on failure. Note: This function does not
# load or import the module; if the module wasn't already loaded,
# you will get an empty module object. Use PyImport_ImportModule()
# or one of its variants to import a module. Package structures
# implied by a dotted name for name are not created if not already
# present.
object PyImport_ExecCodeModule(char *name, object co)
# Return value: New reference.
# Given a module name (possibly of the form package.module) and a
# code object read from a Python bytecode file or obtained from
# the built-in function compile(), load the module. Return a new
# reference to the module object, or NULL with an exception set if
# an error occurred. Name is removed from sys.modules in error
# cases, and even if name was already in sys.modules on entry to
# PyImport_ExecCodeModule(). Leaving incompletely initialized
# modules in sys.modules is dangerous, as imports of such modules
# have no way to know that the module object is an unknown (and
# probably damaged with respect to the module author's intents)
# state.
# This function will reload the module if it was already
# imported. See PyImport_ReloadModule() for the intended way to
# reload a module.
# If name points to a dotted name of the form package.module, any
# package structures not already created will still not be
# created.
long PyImport_GetMagicNumber()
# Return the magic number for Python bytecode files (a.k.a. .pyc
# and .pyo files). The magic number should be present in the first
# four bytes of the bytecode file, in little-endian byte order.
PyObject* PyImport_GetModuleDict() except NULL
# Return value: Borrowed reference.
# Return the dictionary used for the module administration
# (a.k.a. sys.modules). Note that this is a per-interpreter
# variable.
int PyImport_ImportFrozenModule(char *name) except -1
# Load a frozen module named name. Return 1 for success, 0 if the
# module is not found, and -1 with an exception set if the
# initialization failed. To access the imported module on a
# successful load, use PyImport_ImportModule(). (Note the misnomer
# -- this function would reload the module if it was already
# imported.)
int PyImport_ExtendInittab(_inittab *newtab) except -1
# Add a collection of modules to the table of built-in
# modules. The newtab array must end with a sentinel entry which
# contains NULL for the name field; failure to provide the
# sentinel value can result in a memory fault. Returns 0 on
# success or -1 if insufficient memory could be allocated to
# extend the internal table. In the event of failure, no modules
# are added to the internal table. This should be called before
# Py_Initialize().
#####################################################################
# 7.5.5 Module Objects
#####################################################################
# PyTypeObject PyModule_Type
#
# This instance of PyTypeObject represents the Python module
# type. This is exposed to Python programs as types.ModuleType.
bint PyModule_Check(object p)
# Return true if p is a module object, or a subtype of a module
# object.
bint PyModule_CheckExact(object p)
# Return true if p is a module object, but not a subtype of PyModule_Type.
object PyModule_New(const char *name)
# Return value: New reference.
# Return a new module object with the __name__ attribute set to
# name. Only the module's __doc__ and __name__ attributes are
# filled in; the caller is responsible for providing a __file__
# attribute.
PyObject* PyModule_GetDict(object module) except NULL
# Return value: Borrowed reference.
# Return the dictionary object that implements module's namespace;
# this object is the same as the __dict__ attribute of the module
# object. This function never fails. It is recommended extensions
# use other PyModule_*() and PyObject_*() functions rather than
# directly manipulate a module's __dict__.
char* PyModule_GetName(object module) except NULL
# Return module's __name__ value. If the module does not provide
# one, or if it is not a string, SystemError is raised and NULL is
# returned.
char* PyModule_GetFilename(object module) except NULL
# Return the name of the file from which module was loaded using
# module's __file__ attribute. If this is not defined, or if it is
# not a string, raise SystemError and return NULL.
int PyModule_AddObject(object module, const char *name, object value) except -1
# Add an object to module as name. This is a convenience function
# which can be used from the module's initialization
# function. This steals a reference to value. Return -1 on error,
# 0 on success.
int PyModule_AddIntConstant(object module, const char *name, long value) except -1
# Add an integer constant to module as name. This convenience
# function can be used from the module's initialization
# function. Return -1 on error, 0 on success.
int PyModule_AddStringConstant(object module, const char *name, const char *value) except -1
# Add a string constant to module as name. This convenience
# function can be used from the module's initialization
# function. The string value must be null-terminated. Return -1 on
# error, 0 on success.

View file

@ -0,0 +1,265 @@
from .object cimport PyObject
cdef extern from "Python.h":
#####################################################################
# 6.2 Number Protocol
#####################################################################
bint PyNumber_Check(object o)
# Returns 1 if the object o provides numeric protocols, and false
# otherwise. This function always succeeds.
object PyNumber_Add(object o1, object o2)
# Return value: New reference.
# Returns the result of adding o1 and o2, or NULL on failure. This
# is the equivalent of the Python expression "o1 + o2".
object PyNumber_Subtract(object o1, object o2)
# Return value: New reference.
# Returns the result of subtracting o2 from o1, or NULL on
# failure. This is the equivalent of the Python expression "o1 -
# o2".
object PyNumber_Multiply(object o1, object o2)
# Return value: New reference.
# Returns the result of multiplying o1 and o2, or NULL on
# failure. This is the equivalent of the Python expression "o1 *
# o2".
object PyNumber_MatrixMultiply(object o1, object o2)
# Return value: New reference.
# Returns the result of matrix multiplication on o1 and o2, or
# NULL on failure. This is the equivalent of the Python
# expression "o1 @ o2".
# New in version 3.5.
object PyNumber_Divide(object o1, object o2)
# Return value: New reference.
# Returns the result of dividing o1 by o2, or NULL on
# failure. This is the equivalent of the Python expression "o1 /
# o2".
object PyNumber_FloorDivide(object o1, object o2)
# Return value: New reference.
# Return the floor of o1 divided by o2, or NULL on failure. This
# is equivalent to the ``classic'' division of integers.
object PyNumber_TrueDivide(object o1, object o2)
# Return value: New reference.
# Return a reasonable approximation for the mathematical value of
# o1 divided by o2, or NULL on failure. The return value is
# ``approximate'' because binary floating point numbers are
# approximate; it is not possible to represent all real numbers in
# base two. This function can return a floating point value when
# passed two integers.
object PyNumber_Remainder(object o1, object o2)
# Return value: New reference.
# Returns the remainder of dividing o1 by o2, or NULL on
# failure. This is the equivalent of the Python expression "o1 %
# o2".
object PyNumber_Divmod(object o1, object o2)
# Return value: New reference.
# See the built-in function divmod(). Returns NULL on
# failure. This is the equivalent of the Python expression
# "divmod(o1, o2)".
object PyNumber_Power(object o1, object o2, object o3)
# Return value: New reference.
# See the built-in function pow(). Returns NULL on failure. This
# is the equivalent of the Python expression "pow(o1, o2, o3)",
# where o3 is optional. If o3 is to be ignored, pass Py_None in
# its place (passing NULL for o3 would cause an illegal memory
# access).
object PyNumber_Negative(object o)
# Return value: New reference.
# Returns the negation of o on success, or NULL on failure. This
# is the equivalent of the Python expression "-o".
object PyNumber_Positive(object o)
# Return value: New reference.
# Returns o on success, or NULL on failure. This is the equivalent
# of the Python expression "+o".
object PyNumber_Absolute(object o)
# Return value: New reference.
# Returns the absolute value of o, or NULL on failure. This is the
# equivalent of the Python expression "abs(o)".
object PyNumber_Invert(object o)
# Return value: New reference.
# Returns the bitwise negation of o on success, or NULL on
# failure. This is the equivalent of the Python expression "~o".
object PyNumber_Lshift(object o1, object o2)
# Return value: New reference.
# Returns the result of left shifting o1 by o2 on success, or NULL
# on failure. This is the equivalent of the Python expression "o1
# << o2".
object PyNumber_Rshift(object o1, object o2)
# Return value: New reference.
# Returns the result of right shifting o1 by o2 on success, or
# NULL on failure. This is the equivalent of the Python expression
# "o1 >> o2".
object PyNumber_And(object o1, object o2)
# Return value: New reference.
# Returns the ``bitwise and'' of o1 and o2 on success and NULL on
# failure. This is the equivalent of the Python expression "o1 &
# o2".
object PyNumber_Xor(object o1, object o2)
# Return value: New reference.
# Returns the ``bitwise exclusive or'' of o1 by o2 on success, or
# NULL on failure. This is the equivalent of the Python expression
# "o1 ^ o2".
object PyNumber_Or(object o1, object o2)
# Return value: New reference.
# Returns the ``bitwise or'' of o1 and o2 on success, or NULL on failure. This is the equivalent of the Python expression "o1 | o2".
object PyNumber_InPlaceAdd(object o1, object o2)
# Return value: New reference.
# Returns the result of adding o1 and o2, or NULL on failure. The
# operation is done in-place when o1 supports it. This is the
# equivalent of the Python statement "o1 += o2".
object PyNumber_InPlaceSubtract(object o1, object o2)
# Return value: New reference.
# Returns the result of subtracting o2 from o1, or NULL on
# failure. The operation is done in-place when o1 supports
# it. This is the equivalent of the Python statement "o1 -= o2".
object PyNumber_InPlaceMultiply(object o1, object o2)
# Return value: New reference.
# Returns the result of multiplying o1 and o2, or NULL on
# failure. The operation is done in-place when o1 supports
# it. This is the equivalent of the Python statement "o1 *= o2".
object PyNumber_InPlaceMatrixMultiply(object o1, object o2)
# Return value: New reference.
# Returns the result of matrix multiplication on o1 and o2, or
# NULL on failure. The operation is done in-place when o1 supports
# it. This is the equivalent of the Python statement "o1 @= o2".
# New in version 3.5.
object PyNumber_InPlaceDivide(object o1, object o2)
# Return value: New reference.
# Returns the result of dividing o1 by o2, or NULL on failure. The
# operation is done in-place when o1 supports it. This is the
# equivalent of the Python statement "o1 /= o2".
object PyNumber_InPlaceFloorDivide(object o1, object o2)
# Return value: New reference.
# Returns the mathematical floor of dividing o1 by o2, or NULL on
# failure. The operation is done in-place when o1 supports
# it. This is the equivalent of the Python statement "o1 //=
# o2".
object PyNumber_InPlaceTrueDivide(object o1, object o2)
# Return value: New reference.
# Return a reasonable approximation for the mathematical value of
# o1 divided by o2, or NULL on failure. The return value is
# ``approximate'' because binary floating point numbers are
# approximate; it is not possible to represent all real numbers in
# base two. This function can return a floating point value when
# passed two integers. The operation is done in-place when o1
# supports it.
object PyNumber_InPlaceRemainder(object o1, object o2)
# Return value: New reference.
# Returns the remainder of dividing o1 by o2, or NULL on
# failure. The operation is done in-place when o1 supports
# it. This is the equivalent of the Python statement "o1 %= o2".
object PyNumber_InPlacePower(object o1, object o2, object o3)
# Return value: New reference.
# See the built-in function pow(). Returns NULL on failure. The
# operation is done in-place when o1 supports it. This is the
# equivalent of the Python statement "o1 **= o2" when o3 is
# Py_None, or an in-place variant of "pow(o1, o2, o3)"
# otherwise. If o3 is to be ignored, pass Py_None in its place
# (passing NULL for o3 would cause an illegal memory access).
object PyNumber_InPlaceLshift(object o1, object o2)
# Return value: New reference.
# Returns the result of left shifting o1 by o2 on success, or NULL
# on failure. The operation is done in-place when o1 supports
# it. This is the equivalent of the Python statement "o1 <<= o2".
object PyNumber_InPlaceRshift(object o1, object o2)
# Return value: New reference.
# Returns the result of right shifting o1 by o2 on success, or
# NULL on failure. The operation is done in-place when o1 supports
# it. This is the equivalent of the Python statement "o1 >>= o2".
object PyNumber_InPlaceAnd(object o1, object o2)
# Return value: New reference.
# Returns the ``bitwise and'' of o1 and o2 on success and NULL on
# failure. The operation is done in-place when o1 supports
# it. This is the equivalent of the Python statement "o1 &= o2".
object PyNumber_InPlaceXor(object o1, object o2)
# Return value: New reference.
# Returns the ``bitwise exclusive or'' of o1 by o2 on success, or
# NULL on failure. The operation is done in-place when o1 supports
# it. This is the equivalent of the Python statement "o1 ^= o2".
object PyNumber_InPlaceOr(object o1, object o2)
# Return value: New reference.
# Returns the ``bitwise or'' of o1 and o2 on success, or NULL on
# failure. The operation is done in-place when o1 supports
# it. This is the equivalent of the Python statement "o1 |= o2".
int PyNumber_Coerce(PyObject **p1, PyObject **p2) except -1
# This function takes the addresses of two variables of type
# PyObject*. If the objects pointed to by *p1 and *p2 have the
# same type, increment their reference count and return 0
# (success). If the objects can be converted to a common numeric
# type, replace *p1 and *p2 by their converted value (with 'new'
# reference counts), and return 0. If no conversion is possible,
# or if some other error occurs, return -1 (failure) and don't
# increment the reference counts. The call PyNumber_Coerce(&o1,
# &o2) is equivalent to the Python statement "o1, o2 = coerce(o1,
# o2)".
object PyNumber_Int(object o)
# Return value: New reference.
# Returns the o converted to an integer object on success, or NULL
# on failure. If the argument is outside the integer range a long
# object will be returned instead. This is the equivalent of the
# Python expression "int(o)".
object PyNumber_Long(object o)
# Return value: New reference.
# Returns the o converted to a long integer object on success, or
# NULL on failure. This is the equivalent of the Python expression
# "long(o)".
object PyNumber_Float(object o)
# Return value: New reference.
# Returns the o converted to a float object on success, or NULL on
# failure. This is the equivalent of the Python expression
# "float(o)".
object PyNumber_Index(object o)
# Returns the o converted to a Python int or long on success or
# NULL with a TypeError exception raised on failure.
Py_ssize_t PyNumber_AsSsize_t(object o, object exc) except? -1
# Returns o converted to a Py_ssize_t value if o can be
# interpreted as an integer. If o can be converted to a Python int
# or long but the attempt to convert to a Py_ssize_t value would
# raise an OverflowError, then the exc argument is the type of
# exception that will be raised (usually IndexError or
# OverflowError). If exc is NULL, then the exception is cleared
# and the value is clipped to PY_SSIZE_T_MIN for a negative
# integer or PY_SSIZE_T_MAX for a positive integer.
bint PyIndex_Check(object)
# Returns True if o is an index integer (has the nb_index slot of
# the tp_as_number structure filled in).

View file

@ -0,0 +1,399 @@
from libc.stdio cimport FILE
cimport cpython.type
cdef extern from "Python.h":
ctypedef struct PyObject # forward declaration
ctypedef object (*newfunc)(cpython.type.type, object, object) # (type, args, kwargs)
ctypedef object (*unaryfunc)(object)
ctypedef object (*binaryfunc)(object, object)
ctypedef object (*ternaryfunc)(object, object, object)
ctypedef int (*inquiry)(object) except -1
ctypedef Py_ssize_t (*lenfunc)(object) except -1
ctypedef object (*ssizeargfunc)(object, Py_ssize_t)
ctypedef object (*ssizessizeargfunc)(object, Py_ssize_t, Py_ssize_t)
ctypedef int (*ssizeobjargproc)(object, Py_ssize_t, object) except -1
ctypedef int (*ssizessizeobjargproc)(object, Py_ssize_t, Py_ssize_t, object) except -1
ctypedef int (*objobjargproc)(object, object, object) except -1
ctypedef int (*objobjproc)(object, object) except -1
ctypedef Py_hash_t (*hashfunc)(object) except -1
ctypedef object (*reprfunc)(object)
ctypedef int (*cmpfunc)(object, object) except -2
ctypedef object (*richcmpfunc)(object, object, int)
# The following functions use 'PyObject*' as first argument instead of 'object' to prevent
# accidental reference counting when calling them during a garbage collection run.
ctypedef void (*destructor)(PyObject*)
ctypedef int (*visitproc)(PyObject*, void *) except -1
ctypedef int (*traverseproc)(PyObject*, visitproc, void*) except -1
ctypedef void (*freefunc)(void*)
ctypedef object (*descrgetfunc)(object, object, object)
ctypedef int (*descrsetfunc)(object, object, object) except -1
ctypedef struct PyTypeObject:
const char* tp_name
const char* tp_doc
Py_ssize_t tp_basicsize
Py_ssize_t tp_itemsize
Py_ssize_t tp_dictoffset
unsigned long tp_flags
newfunc tp_new
destructor tp_dealloc
traverseproc tp_traverse
inquiry tp_clear
freefunc tp_free
ternaryfunc tp_call
hashfunc tp_hash
reprfunc tp_str
reprfunc tp_repr
cmpfunc tp_compare
richcmpfunc tp_richcompare
PyTypeObject* tp_base
PyObject* tp_dict
descrgetfunc tp_descr_get
descrsetfunc tp_descr_set
ctypedef struct PyObject:
Py_ssize_t ob_refcnt
PyTypeObject *ob_type
cdef PyTypeObject *Py_TYPE(object)
void* PyObject_Malloc(size_t)
void* PyObject_Realloc(void *, size_t)
void PyObject_Free(void *)
#####################################################################
# 6.1 Object Protocol
#####################################################################
int PyObject_Print(object o, FILE *fp, int flags) except -1
# Print an object o, on file fp. Returns -1 on error. The flags
# argument is used to enable certain printing options. The only
# option currently supported is Py_PRINT_RAW; if given, the str()
# of the object is written instead of the repr().
bint PyObject_HasAttrString(object o, const char *attr_name)
# Returns 1 if o has the attribute attr_name, and 0
# otherwise. This is equivalent to the Python expression
# "hasattr(o, attr_name)". This function always succeeds.
object PyObject_GetAttrString(object o, const char *attr_name)
# Return value: New reference. Retrieve an attribute named
# attr_name from object o. Returns the attribute value on success,
# or NULL on failure. This is the equivalent of the Python
# expression "o.attr_name".
bint PyObject_HasAttr(object o, object attr_name)
# Returns 1 if o has the attribute attr_name, and 0
# otherwise. This is equivalent to the Python expression
# "hasattr(o, attr_name)". This function always succeeds.
object PyObject_GetAttr(object o, object attr_name)
# Return value: New reference. Retrieve an attribute named
# attr_name from object o. Returns the attribute value on success,
# or NULL on failure. This is the equivalent of the Python
# expression "o.attr_name".
object PyObject_GenericGetAttr(object o, object attr_name)
int PyObject_SetAttrString(object o, const char *attr_name, object v) except -1
# Set the value of the attribute named attr_name, for object o, to
# the value v. Returns -1 on failure. This is the equivalent of
# the Python statement "o.attr_name = v".
int PyObject_SetAttr(object o, object attr_name, object v) except -1
# Set the value of the attribute named attr_name, for object o, to
# the value v. Returns -1 on failure. This is the equivalent of
# the Python statement "o.attr_name = v".
int PyObject_GenericSetAttr(object o, object attr_name, object v) except -1
int PyObject_DelAttrString(object o, const char *attr_name) except -1
# Delete attribute named attr_name, for object o. Returns -1 on
# failure. This is the equivalent of the Python statement: "del
# o.attr_name".
int PyObject_DelAttr(object o, object attr_name) except -1
# Delete attribute named attr_name, for object o. Returns -1 on
# failure. This is the equivalent of the Python statement "del
# o.attr_name".
int Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, Py_GE
object PyObject_RichCompare(object o1, object o2, int opid)
# Return value: New reference.
# Compare the values of o1 and o2 using the operation specified by
# opid, which must be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or
# Py_GE, corresponding to <, <=, ==, !=, >, or >=
# respectively. This is the equivalent of the Python expression
# "o1 op o2", where op is the operator corresponding to
# opid. Returns the value of the comparison on success, or NULL on
# failure.
bint PyObject_RichCompareBool(object o1, object o2, int opid) except -1
# Compare the values of o1 and o2 using the operation specified by
# opid, which must be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or
# Py_GE, corresponding to <, <=, ==, !=, >, or >=
# respectively. Returns -1 on error, 0 if the result is false, 1
# otherwise. This is the equivalent of the Python expression "o1
# op o2", where op is the operator corresponding to opid.
int PyObject_Cmp(object o1, object o2, int *result) except -1
# Compare the values of o1 and o2 using a routine provided by o1,
# if one exists, otherwise with a routine provided by o2. The
# result of the comparison is returned in result. Returns -1 on
# failure. This is the equivalent of the Python statement "result
# = cmp(o1, o2)".
int PyObject_Compare(object o1, object o2) except *
# Compare the values of o1 and o2 using a routine provided by o1,
# if one exists, otherwise with a routine provided by o2. Returns
# the result of the comparison on success. On error, the value
# returned is undefined; use PyErr_Occurred() to detect an
# error. This is equivalent to the Python expression "cmp(o1,
# o2)".
object PyObject_Repr(object o)
# Return value: New reference.
# Compute a string representation of object o. Returns the string
# representation on success, NULL on failure. This is the
# equivalent of the Python expression "repr(o)". Called by the
# repr() built-in function and by reverse quotes.
object PyObject_Str(object o)
# Return value: New reference.
# Compute a string representation of object o. Returns the string
# representation on success, NULL on failure. This is the
# equivalent of the Python expression "str(o)". Called by the
# str() built-in function and by the print statement.
object PyObject_Unicode(object o)
# Return value: New reference.
# Compute a Unicode string representation of object o. Returns the
# Unicode string representation on success, NULL on failure. This
# is the equivalent of the Python expression "unicode(o)". Called
# by the unicode() built-in function.
bint PyObject_IsInstance(object inst, object cls) except -1
# Returns 1 if inst is an instance of the class cls or a subclass
# of cls, or 0 if not. On error, returns -1 and sets an
# exception. If cls is a type object rather than a class object,
# PyObject_IsInstance() returns 1 if inst is of type cls. If cls
# is a tuple, the check will be done against every entry in
# cls. The result will be 1 when at least one of the checks
# returns 1, otherwise it will be 0. If inst is not a class
# instance and cls is neither a type object, nor a class object,
# nor a tuple, inst must have a __class__ attribute -- the class
# relationship of the value of that attribute with cls will be
# used to determine the result of this function.
# Subclass determination is done in a fairly straightforward way,
# but includes a wrinkle that implementors of extensions to the
# class system may want to be aware of. If A and B are class
# objects, B is a subclass of A if it inherits from A either
# directly or indirectly. If either is not a class object, a more
# general mechanism is used to determine the class relationship of
# the two objects. When testing if B is a subclass of A, if A is
# B, PyObject_IsSubclass() returns true. If A and B are different
# objects, B's __bases__ attribute is searched in a depth-first
# fashion for A -- the presence of the __bases__ attribute is
# considered sufficient for this determination.
bint PyObject_IsSubclass(object derived, object cls) except -1
# Returns 1 if the class derived is identical to or derived from
# the class cls, otherwise returns 0. In case of an error, returns
# -1. If cls is a tuple, the check will be done against every
# entry in cls. The result will be 1 when at least one of the
# checks returns 1, otherwise it will be 0. If either derived or
# cls is not an actual class object (or tuple), this function uses
# the generic algorithm described above. New in version
# 2.1. Changed in version 2.3: Older versions of Python did not
# support a tuple as the second argument.
bint PyCallable_Check(object o)
# Determine if the object o is callable. Return 1 if the object is
# callable and 0 otherwise. This function always succeeds.
object PyObject_Call(object callable_object, object args, object kw)
# Return value: New reference.
# Call a callable Python object callable_object, with arguments
# given by the tuple args, and named arguments given by the
# dictionary kw. If no named arguments are needed, kw may be
# NULL. args must not be NULL, use an empty tuple if no arguments
# are needed. Returns the result of the call on success, or NULL
# on failure. This is the equivalent of the Python expression
# "apply(callable_object, args, kw)" or "callable_object(*args,
# **kw)".
object PyObject_CallObject(object callable_object, object args)
# Return value: New reference.
# Call a callable Python object callable_object, with arguments
# given by the tuple args. If no arguments are needed, then args
# may be NULL. Returns the result of the call on success, or NULL
# on failure. This is the equivalent of the Python expression
# "apply(callable_object, args)" or "callable_object(*args)".
object PyObject_CallFunction(object callable, char *format, ...)
# Return value: New reference.
# Call a callable Python object callable, with a variable number
# of C arguments. The C arguments are described using a
# Py_BuildValue() style format string. The format may be NULL,
# indicating that no arguments are provided. Returns the result of
# the call on success, or NULL on failure. This is the equivalent
# of the Python expression "apply(callable, args)" or
# "callable(*args)". Note that if you only pass object args,
# PyObject_CallFunctionObjArgs is a faster alternative.
object PyObject_CallMethod(object o, char *method, char *format, ...)
# Return value: New reference.
# Call the method named method of object o with a variable number
# of C arguments. The C arguments are described by a
# Py_BuildValue() format string that should produce a tuple. The
# format may be NULL, indicating that no arguments are
# provided. Returns the result of the call on success, or NULL on
# failure. This is the equivalent of the Python expression
# "o.method(args)". Note that if you only pass object args,
# PyObject_CallMethodObjArgs is a faster alternative.
#object PyObject_CallFunctionObjArgs(object callable, ..., NULL)
object PyObject_CallFunctionObjArgs(object callable, ...)
# Return value: New reference.
# Call a callable Python object callable, with a variable number
# of PyObject* arguments. The arguments are provided as a variable
# number of parameters followed by NULL. Returns the result of the
# call on success, or NULL on failure.
#PyObject* PyObject_CallMethodObjArgs(object o, object name, ..., NULL)
object PyObject_CallMethodObjArgs(object o, object name, ...)
# Return value: New reference.
# Calls a method of the object o, where the name of the method is
# given as a Python string object in name. It is called with a
# variable number of PyObject* arguments. The arguments are
# provided as a variable number of parameters followed by
# NULL. Returns the result of the call on success, or NULL on
# failure.
long PyObject_Hash(object o) except? -1
# Compute and return the hash value of an object o. On failure,
# return -1. This is the equivalent of the Python expression
# "hash(o)".
bint PyObject_IsTrue(object o) except -1
# Returns 1 if the object o is considered to be true, and 0
# otherwise. This is equivalent to the Python expression "not not
# o". On failure, return -1.
bint PyObject_Not(object o) except -1
# Returns 0 if the object o is considered to be true, and 1
# otherwise. This is equivalent to the Python expression "not
# o". On failure, return -1.
object PyObject_Type(object o)
# Return value: New reference.
# When o is non-NULL, returns a type object corresponding to the
# object type of object o. On failure, raises SystemError and
# returns NULL. This is equivalent to the Python expression
# type(o). This function increments the reference count of the
# return value. There's really no reason to use this function
# instead of the common expression o->ob_type, which returns a
# pointer of type PyTypeObject*, except when the incremented
# reference count is needed.
bint PyObject_TypeCheck(object o, PyTypeObject *type)
# Return true if the object o is of type type or a subtype of
# type. Both parameters must be non-NULL.
Py_ssize_t PyObject_Length(object o) except -1
Py_ssize_t PyObject_Size(object o) except -1
# Return the length of object o. If the object o provides either
# the sequence and mapping protocols, the sequence length is
# returned. On error, -1 is returned. This is the equivalent to
# the Python expression "len(o)".
object PyObject_GetItem(object o, object key)
# Return value: New reference.
# Return element of o corresponding to the object key or NULL on
# failure. This is the equivalent of the Python expression
# "o[key]".
int PyObject_SetItem(object o, object key, object v) except -1
# Map the object key to the value v. Returns -1 on failure. This
# is the equivalent of the Python statement "o[key] = v".
int PyObject_DelItem(object o, object key) except -1
# Delete the mapping for key from o. Returns -1 on failure. This
# is the equivalent of the Python statement "del o[key]".
int PyObject_AsFileDescriptor(object o) except -1
# Derives a file-descriptor from a Python object. If the object is
# an integer or long integer, its value is returned. If not, the
# object's fileno() method is called if it exists; the method must
# return an integer or long integer, which is returned as the file
# descriptor value. Returns -1 on failure.
object PyObject_Dir(object o)
# Return value: New reference.
# This is equivalent to the Python expression "dir(o)", returning
# a (possibly empty) list of strings appropriate for the object
# argument, or NULL if there was an error. If the argument is
# NULL, this is like the Python "dir()", returning the names of
# the current locals; in this case, if no execution frame is
# active then NULL is returned but PyErr_Occurred() will return
# false.
object PyObject_GetIter(object o)
# Return value: New reference.
# This is equivalent to the Python expression "iter(o)". It
# returns a new iterator for the object argument, or the object
# itself if the object is already an iterator. Raises TypeError
# and returns NULL if the object cannot be iterated.
Py_ssize_t Py_SIZE(object o)
object PyObject_Format(object obj, object format_spec)
# Takes an arbitrary object and returns the result of calling
# obj.__format__(format_spec).
# Added in Py2.6
# Type flags (tp_flags of PyTypeObject)
long Py_TPFLAGS_HAVE_GETCHARBUFFER
long Py_TPFLAGS_HAVE_SEQUENCE_IN
long Py_TPFLAGS_HAVE_INPLACEOPS
long Py_TPFLAGS_CHECKTYPES
long Py_TPFLAGS_HAVE_RICHCOMPARE
long Py_TPFLAGS_HAVE_WEAKREFS
long Py_TPFLAGS_HAVE_ITER
long Py_TPFLAGS_HAVE_CLASS
long Py_TPFLAGS_HEAPTYPE
long Py_TPFLAGS_BASETYPE
long Py_TPFLAGS_READY
long Py_TPFLAGS_READYING
long Py_TPFLAGS_HAVE_GC
long Py_TPFLAGS_HAVE_STACKLESS_EXTENSION
long Py_TPFLAGS_HAVE_INDEX
long Py_TPFLAGS_HAVE_VERSION_TAG
long Py_TPFLAGS_VALID_VERSION_TAG
long Py_TPFLAGS_IS_ABSTRACT
long Py_TPFLAGS_HAVE_NEWBUFFER
long Py_TPFLAGS_INT_SUBCLASS
long Py_TPFLAGS_LONG_SUBCLASS
long Py_TPFLAGS_LIST_SUBCLASS
long Py_TPFLAGS_TUPLE_SUBCLASS
long Py_TPFLAGS_STRING_SUBCLASS
long Py_TPFLAGS_UNICODE_SUBCLASS
long Py_TPFLAGS_DICT_SUBCLASS
long Py_TPFLAGS_BASE_EXC_SUBCLASS
long Py_TPFLAGS_TYPE_SUBCLASS
long Py_TPFLAGS_DEFAULT_EXTERNAL
long Py_TPFLAGS_DEFAULT_CORE
long Py_TPFLAGS_DEFAULT

View file

@ -0,0 +1,63 @@
# Legacy Python 2 buffer interface.
#
# These functions are no longer available in Python 3, use the new
# buffer interface instead.
cdef extern from "Python.h":
cdef enum _:
Py_END_OF_BUFFER
# This constant may be passed as the size parameter to
# PyBuffer_FromObject() or PyBuffer_FromReadWriteObject(). It
# indicates that the new PyBufferObject should refer to base object
# from the specified offset to the end of its exported
# buffer. Using this enables the caller to avoid querying the base
# object for its length.
bint PyBuffer_Check(object p)
# Return true if the argument has type PyBuffer_Type.
object PyBuffer_FromObject(object base, Py_ssize_t offset, Py_ssize_t size)
# Return value: New reference.
#
# Return a new read-only buffer object. This raises TypeError if
# base doesn't support the read-only buffer protocol or doesn't
# provide exactly one buffer segment, or it raises ValueError if
# offset is less than zero. The buffer will hold a reference to the
# base object, and the buffer's contents will refer to the base
# object's buffer interface, starting as position offset and
# extending for size bytes. If size is Py_END_OF_BUFFER, then the
# new buffer's contents extend to the length of the base object's
# exported buffer data.
object PyBuffer_FromReadWriteObject(object base, Py_ssize_t offset, Py_ssize_t size)
# Return value: New reference.
#
# Return a new writable buffer object. Parameters and exceptions
# are similar to those for PyBuffer_FromObject(). If the base
# object does not export the writeable buffer protocol, then
# TypeError is raised.
object PyBuffer_FromMemory(void *ptr, Py_ssize_t size)
# Return value: New reference.
#
# Return a new read-only buffer object that reads from a specified
# location in memory, with a specified size. The caller is
# responsible for ensuring that the memory buffer, passed in as
# ptr, is not deallocated while the returned buffer object
# exists. Raises ValueError if size is less than zero. Note that
# Py_END_OF_BUFFER may not be passed for the size parameter;
# ValueError will be raised in that case.
object PyBuffer_FromReadWriteMemory(void *ptr, Py_ssize_t size)
# Return value: New reference.
#
# Similar to PyBuffer_FromMemory(), but the returned buffer is
# writable.
object PyBuffer_New(Py_ssize_t size)
# Return value: New reference.
#
# Return a new writable buffer object that maintains its own memory
# buffer of size bytes. ValueError is returned if size is not zero
# or positive. Note that the memory buffer (as returned by
# PyObject_AsWriteBuffer()) is not specifically aligned.

View file

@ -0,0 +1,144 @@
# available since Python 3.1!
cdef extern from "Python.h":
ctypedef struct PyCapsule_Type
# This subtype of PyObject represents an opaque value, useful for
# C extension modules who need to pass an opaque value (as a void*
# pointer) through Python code to other C code. It is often used
# to make a C function pointer defined in one module available to
# other modules, so the regular import mechanism can be used to
# access C APIs defined in dynamically loaded modules.
ctypedef void (*PyCapsule_Destructor)(object o)
# The type of a destructor callback for a capsule.
#
# See PyCapsule_New() for the semantics of PyCapsule_Destructor
# callbacks.
bint PyCapsule_CheckExact(object o)
# Return true if its argument is a PyCapsule.
object PyCapsule_New(void *pointer, const char *name,
PyCapsule_Destructor destructor)
# Return value: New reference.
#
# Create a PyCapsule encapsulating the pointer. The pointer
# argument may not be NULL.
#
# On failure, set an exception and return NULL.
#
# The name string may either be NULL or a pointer to a valid C
# string. If non-NULL, this string must outlive the
# capsule. (Though it is permitted to free it inside the
# destructor.)
#
# If the destructor argument is not NULL, it will be called with
# the capsule as its argument when it is destroyed.
#
# If this capsule will be stored as an attribute of a module, the
# name should be specified as modulename.attributename. This will
# enable other modules to import the capsule using
# PyCapsule_Import().
void* PyCapsule_GetPointer(object capsule, const char *name) except? NULL
# Retrieve the pointer stored in the capsule. On failure, set an
# exception and return NULL.
#
# The name parameter must compare exactly to the name stored in
# the capsule. If the name stored in the capsule is NULL, the name
# passed in must also be NULL. Python uses the C function strcmp()
# to compare capsule names.
PyCapsule_Destructor PyCapsule_GetDestructor(object capsule) except? NULL
# Return the current destructor stored in the capsule. On failure,
# set an exception and return NULL.
#
# It is legal for a capsule to have a NULL destructor. This makes
# a NULL return code somewhat ambiguous; use PyCapsule_IsValid()
# or PyErr_Occurred() to disambiguate.
const char* PyCapsule_GetName(object capsule) except? NULL
# Return the current name stored in the capsule. On failure, set
# an exception and return NULL.
#
# It is legal for a capsule to have a NULL name. This makes a NULL
# return code somewhat ambiguous; use PyCapsule_IsValid() or
# PyErr_Occurred() to disambiguate.
void* PyCapsule_GetContext(object capsule) except? NULL
# Return the current context stored in the capsule. On failure,
# set an exception and return NULL.
#
# It is legal for a capsule to have a NULL context. This makes a
# NULL return code somewhat ambiguous; use PyCapsule_IsValid() or
# PyErr_Occurred() to disambiguate.
bint PyCapsule_IsValid(object capsule, const char *name)
# Determines whether or not capsule is a valid capsule. A valid
# capsule is non-NULL, passes PyCapsule_CheckExact(), has a
# non-NULL pointer stored in it, and its internal name matches the
# name parameter. (See PyCapsule_GetPointer() for information on
# how capsule names are compared.)
#
# In other words, if PyCapsule_IsValid() returns a true value,
# calls to any of the accessors (any function starting with
# PyCapsule_Get()) are guaranteed to succeed.
#
# Return a nonzero value if the object is valid and matches the
# name passed in. Return 0 otherwise. This function will not fail.
int PyCapsule_SetPointer(object capsule, void *pointer) except -1
# Set the void pointer inside capsule to pointer. The pointer may
# not be NULL.
#
# Return 0 on success. Return nonzero and set an exception on
# failure.
int PyCapsule_SetDestructor(object capsule, PyCapsule_Destructor destructor) except -1
# Set the destructor inside capsule to destructor.
#
# Return 0 on success. Return nonzero and set an exception on
# failure.
int PyCapsule_SetName(object capsule, const char *name) except -1
# Set the name inside capsule to name. If non-NULL, the name must
# outlive the capsule. If the previous name stored in the capsule
# was not NULL, no attempt is made to free it.
#
# Return 0 on success. Return nonzero and set an exception on
# failure.
int PyCapsule_SetContext(object capsule, void *context) except -1
# Set the context pointer inside capsule to context. Return 0 on
# success. Return nonzero and set an exception on failure.
void* PyCapsule_Import(const char *name, int no_block) except? NULL
# Import a pointer to a C object from a capsule attribute in a
# module. The name parameter should specify the full name to the
# attribute, as in module.attribute. The name stored in the
# capsule must match this string exactly. If no_block is true,
# import the module without blocking (using
# PyImport_ImportModuleNoBlock()). If no_block is false, import
# the module conventionally (using PyImport_ImportModule()).
#
# Return the capsules internal pointer on success. On failure,
# set an exception and return NULL. However, if PyCapsule_Import()
# failed to import the module, and no_block was true, no exception
# is set.

View file

@ -0,0 +1,68 @@
# Interfaces to configure, query, create & destroy the Python runtime
from libc.stdio cimport FILE
from .pystate cimport PyThreadState
cdef extern from "Python.h":
ctypedef int wchar_t
void Py_SetProgramName(wchar_t *)
wchar_t *Py_GetProgramName()
void Py_SetPythonHome(wchar_t *)
wchar_t *Py_GetPythonHome()
# Only used by applications that embed the interpreter and need to
# override the standard encoding determination mechanism
int Py_SetStandardStreamEncoding(const char *encoding, const char *errors)
void Py_Initialize()
void Py_InitializeEx(int)
void _Py_InitializeEx_Private(int, int)
void Py_Finalize()
int Py_FinalizeEx()
int Py_IsInitialized()
PyThreadState *Py_NewInterpreter()
void Py_EndInterpreter(PyThreadState *)
# _Py_PyAtExit is for the atexit module, Py_AtExit is for low-level
# exit functions.
void _Py_PyAtExit(void (*func)(object), object)
int Py_AtExit(void (*func)())
void Py_Exit(int)
# Restore signals that the interpreter has called SIG_IGN on to SIG_DFL.
void _Py_RestoreSignals()
int Py_FdIsInteractive(FILE *, const char *)
# Bootstrap __main__ (defined in Modules/main.c)
int Py_Main(int argc, wchar_t **argv)
# In getpath.c
wchar_t *Py_GetProgramFullPath()
wchar_t *Py_GetPrefix()
wchar_t *Py_GetExecPrefix()
wchar_t *Py_GetPath()
void Py_SetPath(const wchar_t *)
int _Py_CheckPython3()
# In their own files
const char *Py_GetVersion()
const char *Py_GetPlatform()
const char *Py_GetCopyright()
const char *Py_GetCompiler()
const char *Py_GetBuildInfo()
const char *_Py_gitidentifier()
const char *_Py_gitversion()
ctypedef void (*PyOS_sighandler_t)(int)
PyOS_sighandler_t PyOS_getsig(int)
PyOS_sighandler_t PyOS_setsig(int, PyOS_sighandler_t)
# Random
int _PyOS_URandom(void *buffer, Py_ssize_t size)
int _PyOS_URandomNonblock(void *buffer, Py_ssize_t size)

View file

@ -0,0 +1,92 @@
# Thread and interpreter state structures and their interfaces
from .object cimport PyObject
cdef extern from "Python.h":
# We make these an opaque types. If the user wants specific attributes,
# they can be declared manually.
ctypedef long PY_INT64_T # FIXME: Py2.7+, not defined here but used here
ctypedef struct PyInterpreterState:
pass
ctypedef struct PyThreadState:
pass
ctypedef struct PyFrameObject:
pass
# This is not actually a struct, but make sure it can never be coerced to
# an int or used in arithmetic expressions
ctypedef struct PyGILState_STATE:
pass
# The type of the trace function registered using PyEval_SetProfile() and
# PyEval_SetTrace().
# Py_tracefunc return -1 when raising an exception, or 0 for success.
ctypedef int (*Py_tracefunc)(PyObject *, PyFrameObject *, int, PyObject *)
# The following values are used for 'what' for tracefunc functions
enum:
PyTrace_CALL
PyTrace_EXCEPTION
PyTrace_LINE
PyTrace_RETURN
PyTrace_C_CALL
PyTrace_C_EXCEPTION
PyTrace_C_RETURN
PyInterpreterState * PyInterpreterState_New()
void PyInterpreterState_Clear(PyInterpreterState *)
void PyInterpreterState_Delete(PyInterpreterState *)
PY_INT64_T PyInterpreterState_GetID(PyInterpreterState *)
PyThreadState * PyThreadState_New(PyInterpreterState *)
void PyThreadState_Clear(PyThreadState *)
void PyThreadState_Delete(PyThreadState *)
PyThreadState * PyThreadState_Get()
PyThreadState * PyThreadState_Swap(PyThreadState *) # NOTE: DO NOT USE IN CYTHON CODE !
PyObject * PyThreadState_GetDict()
int PyThreadState_SetAsyncExc(long, PyObject *)
# Ensure that the current thread is ready to call the Python
# C API, regardless of the current state of Python, or of its
# thread lock. This may be called as many times as desired
# by a thread so long as each call is matched with a call to
# PyGILState_Release(). In general, other thread-state APIs may
# be used between _Ensure() and _Release() calls, so long as the
# thread-state is restored to its previous state before the Release().
# For example, normal use of the Py_BEGIN_ALLOW_THREADS/
# Py_END_ALLOW_THREADS macros are acceptable.
# The return value is an opaque "handle" to the thread state when
# PyGILState_Ensure() was called, and must be passed to
# PyGILState_Release() to ensure Python is left in the same state. Even
# though recursive calls are allowed, these handles can *not* be shared -
# each unique call to PyGILState_Ensure must save the handle for its
# call to PyGILState_Release.
# When the function returns, the current thread will hold the GIL.
# Failure is a fatal error.
PyGILState_STATE PyGILState_Ensure()
# Release any resources previously acquired. After this call, Python's
# state will be the same as it was prior to the corresponding
# PyGILState_Ensure() call (but generally this state will be unknown to
# the caller, hence the use of the GILState API.)
# Every call to PyGILState_Ensure must be matched by a call to
# PyGILState_Release on the same thread.
void PyGILState_Release(PyGILState_STATE)
# Routines for advanced debuggers, requested by David Beazley.
# Don't use unless you know what you are doing!
PyInterpreterState * PyInterpreterState_Head()
PyInterpreterState * PyInterpreterState_Next(PyInterpreterState *)
PyThreadState * PyInterpreterState_ThreadHead(PyInterpreterState *)
PyThreadState * PyThreadState_Next(PyThreadState *)

View file

@ -0,0 +1,53 @@
cdef extern from "pythread.h":
ctypedef void *PyThread_type_lock
ctypedef void *PyThread_type_sema
void PyThread_init_thread()
long PyThread_start_new_thread(void (*)(void *), void *) # FIXME: legacy
#unsigned long PyThread_start_new_thread(void (*)(void *), void *) # returned 'long' before Py3.7
void PyThread_exit_thread()
long PyThread_get_thread_ident() # FIXME: legacy
#unsigned long PyThread_get_thread_ident() # returned 'long' before Py3.7
PyThread_type_lock PyThread_allocate_lock()
void PyThread_free_lock(PyThread_type_lock)
int PyThread_acquire_lock(PyThread_type_lock, int mode) nogil
void PyThread_release_lock(PyThread_type_lock) nogil
enum:
# 'mode' in PyThread_acquire_lock()
WAIT_LOCK # 1
NOWAIT_LOCK # 0
ctypedef enum PyLockStatus:
# return values of PyThread_acquire_lock() in CPython 3.2+
PY_LOCK_FAILURE = 0
PY_LOCK_ACQUIRED = 1
PY_LOCK_INTR
size_t PyThread_get_stacksize()
int PyThread_set_stacksize(size_t)
# Thread Local Storage (TLS) API deprecated in CPython 3.7+
int PyThread_create_key()
void PyThread_delete_key(int)
int PyThread_set_key_value(int, void *)
void * PyThread_get_key_value(int)
void PyThread_delete_key_value(int key)
# Cleanup after a fork
void PyThread_ReInitTLS()
# Thread Specific Storage (TSS) API in CPython 3.7+ (also backported)
#ctypedef struct Py_tss_t: pass # Cython built-in type
Py_tss_t Py_tss_NEEDS_INIT # Not normally useful: Cython auto-initialises declared "Py_tss_t" variables.
Py_tss_t * PyThread_tss_alloc()
void PyThread_tss_free(Py_tss_t *key)
int PyThread_tss_is_created(Py_tss_t *key)
int PyThread_tss_create(Py_tss_t *key)
void PyThread_tss_delete(Py_tss_t *key)
int PyThread_tss_set(Py_tss_t *key, void *value)
void * PyThread_tss_get(Py_tss_t *key)

View file

@ -0,0 +1,51 @@
from .object cimport PyObject, PyTypeObject, Py_TYPE # legacy imports for re-export
cdef extern from "Python.h":
#####################################################################
# 3. Reference Counts
#####################################################################
# The macros in this section are used for managing reference counts of Python objects.
void Py_INCREF(object o)
# Increment the reference count for object o. The object must not
# be NULL; if you aren't sure that it isn't NULL, use
# Py_XINCREF().
void Py_XINCREF(PyObject* o)
# Increment the reference count for object o. The object may be NULL, in which case the macro has no effect.
void Py_DECREF(object o)
# Decrement the reference count for object o. The object must not
# be NULL; if you aren't sure that it isn't NULL, use
# Py_XDECREF(). If the reference count reaches zero, the object's
# type's deallocation function (which must not be NULL) is
# invoked.
# Warning: The deallocation function can cause arbitrary Python
# code to be invoked (e.g. when a class instance with a __del__()
# method is deallocated). While exceptions in such code are not
# propagated, the executed code has free access to all Python
# global variables. This means that any object that is reachable
# from a global variable should be in a consistent state before
# Py_DECREF() is invoked. For example, code to delete an object
# from a list should copy a reference to the deleted object in a
# temporary variable, update the list data structure, and then
# call Py_DECREF() for the temporary variable.
void Py_XDECREF(PyObject* o)
# Decrement the reference count for object o. The object may be
# NULL, in which case the macro has no effect; otherwise the
# effect is the same as for Py_DECREF(), and the same warning
# applies.
void Py_CLEAR(PyObject* o)
# Decrement the reference count for object o. The object may be
# NULL, in which case the macro has no effect; otherwise the
# effect is the same as for Py_DECREF(), except that the argument
# is also set to NULL. The warning for Py_DECREF() does not apply
# with respect to the object passed because the macro carefully
# uses a temporary variable and sets the argument to NULL before
# decrementing its reference count.
# It is a good idea to use this macro whenever decrementing the
# value of a variable that might be traversed during garbage
# collection.

View file

@ -0,0 +1,136 @@
from .object cimport PyObject
cdef extern from "Python.h":
############################################################################
# 6.3 Sequence Protocol
############################################################################
bint PySequence_Check(object o)
# Return 1 if the object provides sequence protocol, and 0
# otherwise. This function always succeeds.
Py_ssize_t PySequence_Size(object o) except -1
# Returns the number of objects in sequence o on success, and -1
# on failure. For objects that do not provide sequence protocol,
# this is equivalent to the Python expression "len(o)".
Py_ssize_t PySequence_Length(object o) except -1
# Alternate name for PySequence_Size().
object PySequence_Concat(object o1, object o2)
# Return value: New reference.
# Return the concatenation of o1 and o2 on success, and NULL on
# failure. This is the equivalent of the Python expression "o1 +
# o2".
object PySequence_Repeat(object o, Py_ssize_t count)
# Return value: New reference.
# Return the result of repeating sequence object o count times, or
# NULL on failure. This is the equivalent of the Python expression
# "o * count".
object PySequence_InPlaceConcat(object o1, object o2)
# Return value: New reference.
# Return the concatenation of o1 and o2 on success, and NULL on
# failure. The operation is done in-place when o1 supports
# it. This is the equivalent of the Python expression "o1 += o2".
object PySequence_InPlaceRepeat(object o, Py_ssize_t count)
# Return value: New reference.
# Return the result of repeating sequence object o count times, or
# NULL on failure. The operation is done in-place when o supports
# it. This is the equivalent of the Python expression "o *=
# count".
object PySequence_GetItem(object o, Py_ssize_t i)
# Return value: New reference.
# Return the ith element of o, or NULL on failure. This is the
# equivalent of the Python expression "o[i]".
object PySequence_GetSlice(object o, Py_ssize_t i1, Py_ssize_t i2)
# Return value: New reference.
# Return the slice of sequence object o between i1 and i2, or NULL
# on failure. This is the equivalent of the Python expression
# "o[i1:i2]".
int PySequence_SetItem(object o, Py_ssize_t i, object v) except -1
# Assign object v to the ith element of o. Returns -1 on
# failure. This is the equivalent of the Python statement "o[i] =
# v". This function does not steal a reference to v.
int PySequence_DelItem(object o, Py_ssize_t i) except -1
# Delete the ith element of object o. Returns -1 on failure. This
# is the equivalent of the Python statement "del o[i]".
int PySequence_SetSlice(object o, Py_ssize_t i1, Py_ssize_t i2, object v) except -1
# Assign the sequence object v to the slice in sequence object o
# from i1 to i2. This is the equivalent of the Python statement
# "o[i1:i2] = v".
int PySequence_DelSlice(object o, Py_ssize_t i1, Py_ssize_t i2) except -1
# Delete the slice in sequence object o from i1 to i2. Returns -1
# on failure. This is the equivalent of the Python statement "del
# o[i1:i2]".
int PySequence_Count(object o, object value) except -1
# Return the number of occurrences of value in o, that is, return
# the number of keys for which o[key] == value. On failure, return
# -1. This is equivalent to the Python expression
# "o.count(value)".
int PySequence_Contains(object o, object value) except -1
# Determine if o contains value. If an item in o is equal to
# value, return 1, otherwise return 0. On error, return -1. This
# is equivalent to the Python expression "value in o".
Py_ssize_t PySequence_Index(object o, object value) except -1
# Return the first index i for which o[i] == value. On error,
# return -1. This is equivalent to the Python expression
# "o.index(value)".
object PySequence_List(object o)
# Return value: New reference.
# Return a list object with the same contents as the arbitrary
# sequence o. The returned list is guaranteed to be new.
object PySequence_Tuple(object o)
# Return value: New reference.
# Return a tuple object with the same contents as the arbitrary
# sequence o or NULL on failure. If o is a tuple, a new reference
# will be returned, otherwise a tuple will be constructed with the
# appropriate contents. This is equivalent to the Python
# expression "tuple(o)".
object PySequence_Fast(object o, char *m)
# Return value: New reference.
# Returns the sequence o as a tuple, unless it is already a tuple
# or list, in which case o is returned. Use
# PySequence_Fast_GET_ITEM() to access the members of the
# result. Returns NULL on failure. If the object is not a
# sequence, raises TypeError with m as the message text.
PyObject* PySequence_Fast_GET_ITEM(object o, Py_ssize_t i)
# Return value: Borrowed reference.
# Return the ith element of o, assuming that o was returned by
# PySequence_Fast(), o is not NULL, and that i is within bounds.
PyObject** PySequence_Fast_ITEMS(object o)
# Return the underlying array of PyObject pointers. Assumes that o
# was returned by PySequence_Fast() and o is not NULL.
object PySequence_ITEM(object o, Py_ssize_t i)
# Return value: New reference.
# Return the ith element of o or NULL on failure. Macro form of
# PySequence_GetItem() but without checking that
# PySequence_Check(o) is true and without adjustment for negative
# indices.
Py_ssize_t PySequence_Fast_GET_SIZE(object o)
# Returns the length of o, assuming that o was returned by
# PySequence_Fast() and that o is not NULL. The size can also be
# gotten by calling PySequence_Size() on o, but
# PySequence_Fast_GET_SIZE() is faster because it can assume o is
# a list or tuple.

View file

@ -0,0 +1,119 @@
cdef extern from "Python.h":
############################################################################
# 7.5.14 Set Objects
############################################################################
# This section details the public API for set and frozenset
# objects. Any functionality not listed below is best accessed
# using the either the abstract object protocol (including
# PyObject_CallMethod(), PyObject_RichCompareBool(),
# PyObject_Hash(), PyObject_Repr(), PyObject_IsTrue(),
# PyObject_Print(), and PyObject_GetIter()) or the abstract number
# protocol (including PyNumber_Add(), PyNumber_Subtract(),
# PyNumber_Or(), PyNumber_Xor(), PyNumber_InPlaceAdd(),
# PyNumber_InPlaceSubtract(), PyNumber_InPlaceOr(), and
# PyNumber_InPlaceXor()).
# PySetObject
# This subtype of PyObject is used to hold the internal data for
# both set and frozenset objects. It is like a PyDictObject in
# that it is a fixed size for small sets (much like tuple storage)
# and will point to a separate, variable sized block of memory for
# medium and large sized sets (much like list storage). None of
# the fields of this structure should be considered public and are
# subject to change. All access should be done through the
# documented API rather than by manipulating the values in the
# structure.
# PyTypeObject PySet_Type
# This is an instance of PyTypeObject representing the Python set type.
# PyTypeObject PyFrozenSet_Type
# This is an instance of PyTypeObject representing the Python frozenset type.
# The following type check macros work on pointers to any Python
# object. Likewise, the constructor functions work with any
# iterable Python object.
bint PyAnySet_Check(object p)
# Return true if p is a set object, a frozenset object, or an
# instance of a subtype.
bint PyAnySet_CheckExact(object p)
# Return true if p is a set object or a frozenset object but not
# an instance of a subtype.
bint PyFrozenSet_Check(object p)
# Return true if p is a frozenset object or an instance of a subtype.
bint PyFrozenSet_CheckExact(object p)
# Return true if p is a frozenset object but not an instance of a subtype.
bint PySet_Check(object p)
# Return true if p is a set object or an instance of a subtype.
object PySet_New(object iterable)
# Return value: New reference.
# Return a new set containing objects returned by the
# iterable. The iterable may be NULL to create a new empty
# set. Return the new set on success or NULL on failure. Raise
# TypeError if iterable is not actually iterable. The constructor
# is also useful for copying a set (c=set(s)).
object PyFrozenSet_New(object iterable)
# Return value: New reference.
# Return a new frozenset containing objects returned by the
# iterable. The iterable may be NULL to create a new empty
# frozenset. Return the new set on success or NULL on
# failure. Raise TypeError if iterable is not actually iterable.
# The following functions and macros are available for instances
# of set or frozenset or instances of their subtypes.
Py_ssize_t PySet_Size(object anyset) except -1
# Return the length of a set or frozenset object. Equivalent to
# "len(anyset)". Raises a PyExc_SystemError if anyset is not a
# set, frozenset, or an instance of a subtype.
Py_ssize_t PySet_GET_SIZE(object anyset)
# Macro form of PySet_Size() without error checking.
bint PySet_Contains(object anyset, object key) except -1
# Return 1 if found, 0 if not found, and -1 if an error is
# encountered. Unlike the Python __contains__() method, this
# function does not automatically convert unhashable sets into
# temporary frozensets. Raise a TypeError if the key is
# unhashable. Raise PyExc_SystemError if anyset is not a set,
# frozenset, or an instance of a subtype.
# The following functions are available for instances of set or
# its subtypes but not for instances of frozenset or its subtypes.
int PySet_Add(object set, object key) except -1
# Add key to a set instance. Does not apply to frozenset
# instances. Return 0 on success or -1 on failure. Raise a
# TypeError if the key is unhashable. Raise a MemoryError if there
# is no room to grow. Raise a SystemError if set is an not an
# instance of set or its subtype.
bint PySet_Discard(object set, object key) except -1
# Return 1 if found and removed, 0 if not found (no action taken),
# and -1 if an error is encountered. Does not raise KeyError for
# missing keys. Raise a TypeError if the key is unhashable. Unlike
# the Python discard() method, this function does not
# automatically convert unhashable sets into temporary
# frozensets. Raise PyExc_SystemError if set is an not an instance
# of set or its subtype.
object PySet_Pop(object set)
# Return value: New reference.
# Return a new reference to an arbitrary object in the set, and
# removes the object from the set. Return NULL on failure. Raise
# KeyError if the set is empty. Raise a SystemError if set is an
# not an instance of set or its subtype.
int PySet_Clear(object set)
# Empty an existing set of all elements.

View file

@ -0,0 +1,70 @@
cdef extern from "Python.h":
# PyTypeObject PySlice_Type
#
# The type object for slice objects. This is the same as slice and types.SliceType
bint PySlice_Check(object ob)
#
# Return true if ob is a slice object; ob must not be NULL.
slice PySlice_New(object start, object stop, object step)
#
# Return a new slice object with the given values. The start, stop, and step
# parameters are used as the values of the slice object attributes of the same
# names. Any of the values may be NULL, in which case the None will be used
# for the corresponding attribute. Return NULL if the new object could not be
# allocated.
int PySlice_GetIndices(object slice, Py_ssize_t length,
Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step) except? -1
#
# Retrieve the start, stop and step indices from the slice object slice,
# assuming a sequence of length length. Treats indices greater than length
# as errors.
#
# Returns 0 on success and -1 on error with no exception set (unless one
# of the indices was not None and failed to be converted to an integer,
# in which case -1 is returned with an exception set).
#
# You probably do not want to use this function.
#
# Changed in version 3.2: The parameter type for the slice parameter was
# PySliceObject* before.
int PySlice_GetIndicesEx(object slice, Py_ssize_t length,
Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step,
Py_ssize_t *slicelength) except -1
#
# Usable replacement for PySlice_GetIndices(). Retrieve the start, stop, and step
# indices from the slice object slice assuming a sequence of length length, and
# store the length of the slice in slicelength. Out of bounds indices are clipped
# in a manner consistent with the handling of normal slices.
#
# Returns 0 on success and -1 on error with exception set.
#
# Changed in version 3.2: The parameter type for the slice parameter was
# PySliceObject* before.
int PySlice_Unpack(object slice, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step) except -1
# Extract the start, stop and step data members from a slice object as C
# integers. Silently reduce values larger than PY_SSIZE_T_MAX to
# PY_SSIZE_T_MAX, silently boost the start and stop values less than
# PY_SSIZE_T_MIN to PY_SSIZE_T_MIN, and silently boost the step values
# less than -PY_SSIZE_T_MAX to -PY_SSIZE_T_MAX.
# Return -1 on error, 0 on success.
# New in version 3.6.1.
Py_ssize_t PySlice_AdjustIndices(Py_ssize_t length, Py_ssize_t *start,
Py_ssize_t *stop, Py_ssize_t step)
# Adjust start/end slice indices assuming a sequence of the specified
# length. Out of bounds indices are clipped in a manner consistent with
# the handling of normal slices.
# Return the length of the slice. Always successful. Doesnt call Python
# code.
# New in version 3.6.1.

View file

@ -0,0 +1,198 @@
from .object cimport PyObject
cdef extern from "Python.h":
ctypedef struct va_list
############################################################################
# 7.3.1 String Objects
############################################################################
# These functions raise TypeError when expecting a string
# parameter and are called with a non-string parameter.
# PyStringObject
# This subtype of PyObject represents a Python string object.
# PyTypeObject PyString_Type
# This instance of PyTypeObject represents the Python string type;
# it is the same object as str and types.StringType in the Python
# layer.
bint PyString_Check(object o)
# Return true if the object o is a string object or an instance of
# a subtype of the string type.
bint PyString_CheckExact(object o)
# Return true if the object o is a string object, but not an instance of a subtype of the string type.
object PyString_FromString(char *v)
# Return value: New reference.
# Return a new string object with the value v on success, and NULL
# on failure. The parameter v must not be NULL; it will not be
# checked.
object PyString_FromStringAndSize(char *v, Py_ssize_t len)
# Return value: New reference.
# Return a new string object with the value v and length len on
# success, and NULL on failure. If v is NULL, the contents of the
# string are uninitialized.
object PyString_FromFormat(char *format, ...)
# Return value: New reference.
# Take a C printf()-style format string and a variable number of
# arguments, calculate the size of the resulting Python string and
# return a string with the values formatted into it. The variable
# arguments must be C types and must correspond exactly to the
# format characters in the format string. The following format
# characters are allowed:
# Format Characters Type Comment
# %% n/a The literal % character.
# %c int A single character, represented as an C int.
# %d int Exactly equivalent to printf("%d").
# %u unsigned int Exactly equivalent to printf("%u").
# %ld long Exactly equivalent to printf("%ld").
# %lu unsigned long Exactly equivalent to printf("%lu").
# %zd Py_ssize_t Exactly equivalent to printf("%zd").
# %zu size_t Exactly equivalent to printf("%zu").
# %i int Exactly equivalent to printf("%i").
# %x int Exactly equivalent to printf("%x").
# %s char* A null-terminated C character array.
# %p void* The hex representation of a C pointer.
# Mostly equivalent to printf("%p") except that it is guaranteed to
# start with the literal 0x regardless of what the platform's printf
# yields.
# An unrecognized format character causes all the rest of the
# format string to be copied as-is to the result string, and any
# extra arguments discarded.
object PyString_FromFormatV(char *format, va_list vargs)
# Return value: New reference.
# Identical to PyString_FromFormat() except that it takes exactly two arguments.
Py_ssize_t PyString_Size(object string) except -1
# Return the length of the string in string object string.
Py_ssize_t PyString_GET_SIZE(object string)
# Macro form of PyString_Size() but without error checking.
char* PyString_AsString(object string) except NULL
# Return a NUL-terminated representation of the contents of
# string. The pointer refers to the internal buffer of string, not
# a copy. The data must not be modified in any way, unless the
# string was just created using PyString_FromStringAndSize(NULL,
# size). It must not be deallocated. If string is a Unicode
# object, this function computes the default encoding of string
# and operates on that. If string is not a string object at all,
# PyString_AsString() returns NULL and raises TypeError.
char* PyString_AS_STRING(object string)
# Macro form of PyString_AsString() but without error
# checking. Only string objects are supported; no Unicode objects
# should be passed.
int PyString_AsStringAndSize(object obj, char **buffer, Py_ssize_t *length) except -1
# Return a NULL-terminated representation of the contents of the
# object obj through the output variables buffer and length.
#
# The function accepts both string and Unicode objects as
# input. For Unicode objects it returns the default encoded
# version of the object. If length is NULL, the resulting buffer
# may not contain NUL characters; if it does, the function returns
# -1 and a TypeError is raised.
# The buffer refers to an internal string buffer of obj, not a
# copy. The data must not be modified in any way, unless the
# string was just created using PyString_FromStringAndSize(NULL,
# size). It must not be deallocated. If string is a Unicode
# object, this function computes the default encoding of string
# and operates on that. If string is not a string object at all,
# PyString_AsStringAndSize() returns -1 and raises TypeError.
void PyString_Concat(PyObject **string, object newpart)
# Create a new string object in *string containing the contents of
# newpart appended to string; the caller will own the new
# reference. The reference to the old value of string will be
# stolen. If the new string cannot be created, the old reference
# to string will still be discarded and the value of *string will
# be set to NULL; the appropriate exception will be set.
void PyString_ConcatAndDel(PyObject **string, object newpart)
# Create a new string object in *string containing the contents of
# newpart appended to string. This version decrements the
# reference count of newpart.
int _PyString_Resize(PyObject **string, Py_ssize_t newsize) except -1
# A way to resize a string object even though it is
# ``immutable''. Only use this to build up a brand new string
# object; don't use this if the string may already be known in
# other parts of the code. It is an error to call this function if
# the refcount on the input string object is not one. Pass the
# address of an existing string object as an lvalue (it may be
# written into), and the new size desired. On success, *string
# holds the resized string object and 0 is returned; the address
# in *string may differ from its input value. If the reallocation
# fails, the original string object at *string is deallocated,
# *string is set to NULL, a memory exception is set, and -1 is
# returned.
object PyString_Format(object format, object args)
# Return value: New reference. Return a new string object from
# format and args. Analogous to format % args. The args argument
# must be a tuple.
void PyString_InternInPlace(PyObject **string)
# Intern the argument *string in place. The argument must be the
# address of a pointer variable pointing to a Python string
# object. If there is an existing interned string that is the same
# as *string, it sets *string to it (decrementing the reference
# count of the old string object and incrementing the reference
# count of the interned string object), otherwise it leaves
# *string alone and interns it (incrementing its reference
# count). (Clarification: even though there is a lot of talk about
# reference counts, think of this function as
# reference-count-neutral; you own the object after the call if
# and only if you owned it before the call.)
object PyString_InternFromString(char *v)
# Return value: New reference.
# A combination of PyString_FromString() and
# PyString_InternInPlace(), returning either a new string object
# that has been interned, or a new (``owned'') reference to an
# earlier interned string object with the same value.
object PyString_Decode(char *s, Py_ssize_t size, char *encoding, char *errors)
# Return value: New reference.
# Create an object by decoding size bytes of the encoded buffer s
# using the codec registered for encoding. encoding and errors
# have the same meaning as the parameters of the same name in the
# unicode() built-in function. The codec to be used is looked up
# using the Python codec registry. Return NULL if an exception was
# raised by the codec.
object PyString_AsDecodedObject(object str, char *encoding, char *errors)
# Return value: New reference.
# Decode a string object by passing it to the codec registered for
# encoding and return the result as Python object. encoding and
# errors have the same meaning as the parameters of the same name
# in the string encode() method. The codec to be used is looked up
# using the Python codec registry. Return NULL if an exception was
# raised by the codec.
object PyString_Encode(char *s, Py_ssize_t size, char *encoding, char *errors)
# Return value: New reference.
# Encode the char buffer of the given size by passing it to the
# codec registered for encoding and return a Python
# object. encoding and errors have the same meaning as the
# parameters of the same name in the string encode() method. The
# codec to be used is looked up using the Python codec
# registry. Return NULL if an exception was raised by the codec.
object PyString_AsEncodedObject(object str, char *encoding, char *errors)
# Return value: New reference.
# Encode a string object using the codec registered for encoding
# and return the result as Python object. encoding and errors have
# the same meaning as the parameters of the same name in the
# string encode() method. The codec to be used is looked up using
# the Python codec registry. Return NULL if an exception was
# raised by the codec.

View file

@ -0,0 +1,71 @@
from .object cimport PyObject
cdef extern from "Python.h":
############################################################################
# Tuples
############################################################################
bint PyTuple_Check(object p)
# Return true if p is a tuple object or an instance of a subtype
# of the tuple type.
bint PyTuple_CheckExact(object p)
# Return true if p is a tuple object, but not an instance of a subtype of the tuple type.
tuple PyTuple_New(Py_ssize_t len)
# Return value: New reference.
# Return a new tuple object of size len, or NULL on failure.
tuple PyTuple_Pack(Py_ssize_t n, ...)
# Return value: New reference.
# Return a new tuple object of size n, or NULL on failure. The
# tuple values are initialized to the subsequent n C arguments
# pointing to Python objects. "PyTuple_Pack(2, a, b)" is
# equivalent to "Py_BuildValue("(OO)", a, b)".
Py_ssize_t PyTuple_Size(object p) except -1
# Take a pointer to a tuple object, and return the size of that tuple.
Py_ssize_t PyTuple_GET_SIZE(object p)
# Return the size of the tuple p, which must be non-NULL and point
# to a tuple; no error checking is performed.
PyObject* PyTuple_GetItem(object p, Py_ssize_t pos) except NULL
# Return value: Borrowed reference.
# Return the object at position pos in the tuple pointed to by
# p. If pos is out of bounds, return NULL and sets an IndexError
# exception.
PyObject* PyTuple_GET_ITEM(object p, Py_ssize_t pos)
# Return value: Borrowed reference.
# Like PyTuple_GetItem(), but does no checking of its arguments.
tuple PyTuple_GetSlice(object p, Py_ssize_t low, Py_ssize_t high)
# Return value: New reference.
# Take a slice of the tuple pointed to by p from low to high and return it as a new tuple.
int PyTuple_SetItem(object p, Py_ssize_t pos, object o) except -1
# Insert a reference to object o at position pos of the tuple
# pointed to by p. Return 0 on success. Note: This function
# ``steals'' a reference to o.
void PyTuple_SET_ITEM(object p, Py_ssize_t pos, object o)
# Like PyTuple_SetItem(), but does no error checking, and should
# only be used to fill in brand new tuples. Note: This function
# ``steals'' a reference to o.
int _PyTuple_Resize(PyObject **p, Py_ssize_t newsize) except -1
# Can be used to resize a tuple. newsize will be the new length of
# the tuple. Because tuples are supposed to be immutable, this
# should only be used if there is only one reference to the
# object. Do not use this if the tuple may already be known to
# some other part of the code. The tuple will always grow or
# shrink at the end. Think of this as destroying the old tuple and
# creating a new one, only more efficiently. Returns 0 on
# success. Client code should never assume that the resulting
# value of *p will be the same as before calling this function. If
# the object referenced by *p is replaced, the original *p is
# destroyed. On failure, returns -1 and sets *p to NULL, and
# raises MemoryError or SystemError.

View file

@ -0,0 +1,48 @@
cdef extern from "Python.h":
# The C structure of the objects used to describe built-in types.
############################################################################
# 7.1.1 Type Objects
############################################################################
ctypedef class __builtin__.type [object PyTypeObject]:
pass
# PyObject* PyType_Type
# This is the type object for type objects; it is the same object
# as type and types.TypeType in the Python layer.
bint PyType_Check(object o)
# Return true if the object o is a type object, including
# instances of types derived from the standard type object. Return
# false in all other cases.
bint PyType_CheckExact(object o)
# Return true if the object o is a type object, but not a subtype
# of the standard type object. Return false in all other
# cases.
bint PyType_HasFeature(object o, int feature)
# Return true if the type object o sets the feature feature. Type
# features are denoted by single bit flags.
bint PyType_IS_GC(object o)
# Return true if the type object includes support for the cycle
# detector; this tests the type flag Py_TPFLAGS_HAVE_GC.
bint PyType_IsSubtype(type a, type b)
# Return true if a is a subtype of b.
object PyType_GenericAlloc(object type, Py_ssize_t nitems)
# Return value: New reference.
object PyType_GenericNew(type type, object args, object kwds)
# Return value: New reference.
bint PyType_Ready(type type) except -1
# Finalize a type object. This should be called on all type
# objects to finish their initialization. This function is
# responsible for adding inherited slots from a type's base
# class. Return 0 on success, or return -1 and sets an exception
# on error.

View file

@ -0,0 +1,572 @@
cdef extern from *:
# Return true if the object o is a Unicode object or an instance
# of a Unicode subtype. Changed in version 2.2: Allowed subtypes
# to be accepted.
bint PyUnicode_Check(object o)
# Return true if the object o is a Unicode object, but not an
# instance of a subtype. New in version 2.2.
bint PyUnicode_CheckExact(object o)
# Return the size of the object. o has to be a PyUnicodeObject
# (not checked).
#
# Deprecated since version 3.3, will be removed in version 3.10:
# Part of the old-style Unicode API, please migrate to using
# PyUnicode_GET_LENGTH().
Py_ssize_t PyUnicode_GET_SIZE(object o)
# Return the length of the Unicode string, in code points. o has
# to be a Unicode object in the “canonical” representation (not
# checked).
#
# New in version 3.3.
Py_ssize_t PyUnicode_GET_LENGTH(object o)
# Return the size of the object's internal buffer in bytes. o has
# to be a PyUnicodeObject (not checked).
Py_ssize_t PyUnicode_GET_DATA_SIZE(object o)
# Return a pointer to the internal Py_UNICODE buffer of the
# object. o has to be a PyUnicodeObject (not checked).
Py_UNICODE* PyUnicode_AS_UNICODE(object o)
# Return a pointer to the internal buffer of the object. o has to
# be a PyUnicodeObject (not checked).
char* PyUnicode_AS_DATA(object o)
# Return 1 or 0 depending on whether ch is a whitespace character.
bint Py_UNICODE_ISSPACE(Py_UCS4 ch)
# Return 1 or 0 depending on whether ch is a lowercase character.
bint Py_UNICODE_ISLOWER(Py_UCS4 ch)
# Return 1 or 0 depending on whether ch is an uppercase character.
bint Py_UNICODE_ISUPPER(Py_UCS4 ch)
# Return 1 or 0 depending on whether ch is a titlecase character.
bint Py_UNICODE_ISTITLE(Py_UCS4 ch)
# Return 1 or 0 depending on whether ch is a linebreak character.
bint Py_UNICODE_ISLINEBREAK(Py_UCS4 ch)
# Return 1 or 0 depending on whether ch is a decimal character.
bint Py_UNICODE_ISDECIMAL(Py_UCS4 ch)
# Return 1 or 0 depending on whether ch is a digit character.
bint Py_UNICODE_ISDIGIT(Py_UCS4 ch)
# Return 1 or 0 depending on whether ch is a numeric character.
bint Py_UNICODE_ISNUMERIC(Py_UCS4 ch)
# Return 1 or 0 depending on whether ch is an alphabetic character.
bint Py_UNICODE_ISALPHA(Py_UCS4 ch)
# Return 1 or 0 depending on whether ch is an alphanumeric character.
bint Py_UNICODE_ISALNUM(Py_UCS4 ch)
# Return the character ch converted to lower case.
# Used to return a Py_UNICODE value before Py3.3.
Py_UCS4 Py_UNICODE_TOLOWER(Py_UCS4 ch)
# Return the character ch converted to upper case.
# Used to return a Py_UNICODE value before Py3.3.
Py_UCS4 Py_UNICODE_TOUPPER(Py_UCS4 ch)
# Return the character ch converted to title case.
# Used to return a Py_UNICODE value before Py3.3.
Py_UCS4 Py_UNICODE_TOTITLE(Py_UCS4 ch)
# Return the character ch converted to a decimal positive
# integer. Return -1 if this is not possible. This macro does not
# raise exceptions.
int Py_UNICODE_TODECIMAL(Py_UCS4 ch)
# Return the character ch converted to a single digit
# integer. Return -1 if this is not possible. This macro does not
# raise exceptions.
int Py_UNICODE_TODIGIT(Py_UCS4 ch)
# Return the character ch converted to a double. Return -1.0 if
# this is not possible. This macro does not raise exceptions.
double Py_UNICODE_TONUMERIC(Py_UCS4 ch)
# To create Unicode objects and access their basic sequence
# properties, use these APIs:
# Create a Unicode Object from the Py_UNICODE buffer u of the
# given size. u may be NULL which causes the contents to be
# undefined. It is the user's responsibility to fill in the needed
# data. The buffer is copied into the new object. If the buffer is
# not NULL, the return value might be a shared object. Therefore,
# modification of the resulting Unicode object is only allowed
# when u is NULL.
unicode PyUnicode_FromUnicode(Py_UNICODE *u, Py_ssize_t size)
# Create a Unicode Object from the given Unicode code point ordinal.
#
# The ordinal must be in range(0x10000) on narrow Python builds
# (UCS2), and range(0x110000) on wide builds (UCS4). A ValueError
# is raised in case it is not.
unicode PyUnicode_FromOrdinal(int ordinal)
# Return a read-only pointer to the Unicode object's internal
# Py_UNICODE buffer, NULL if unicode is not a Unicode object.
Py_UNICODE* PyUnicode_AsUnicode(object o) except NULL
# Return the length of the Unicode object.
Py_ssize_t PyUnicode_GetSize(object o) except -1
# Coerce an encoded object obj to an Unicode object and return a
# reference with incremented refcount.
# String and other char buffer compatible objects are decoded
# according to the given encoding and using the error handling
# defined by errors. Both can be NULL to have the interface use
# the default values (see the next section for details).
# All other objects, including Unicode objects, cause a TypeError
# to be set.
object PyUnicode_FromEncodedObject(object o, char *encoding, char *errors)
# Shortcut for PyUnicode_FromEncodedObject(obj, NULL, "strict")
# which is used throughout the interpreter whenever coercion to
# Unicode is needed.
object PyUnicode_FromObject(object obj)
# If the platform supports wchar_t and provides a header file
# wchar.h, Python can interface directly to this type using the
# following functions. Support is optimized if Python's own
# Py_UNICODE type is identical to the system's wchar_t.
#ctypedef int wchar_t
# Create a Unicode object from the wchar_t buffer w of the given
# size. Return NULL on failure.
#PyObject* PyUnicode_FromWideChar(wchar_t *w, Py_ssize_t size)
#Py_ssize_t PyUnicode_AsWideChar(object o, wchar_t *w, Py_ssize_t size)
# Unicode Methods
# Concat two strings giving a new Unicode string.
# Return value: New reference.
unicode PyUnicode_Concat(object left, object right)
# Split a string giving a list of Unicode strings. If sep is NULL,
# splitting will be done at all whitespace substrings. Otherwise,
# splits occur at the given separator. At most maxsplit splits will
# be done. If negative, no limit is set. Separators are not included
# in the resulting list.
# Return value: New reference.
list PyUnicode_Split(object s, object sep, Py_ssize_t maxsplit)
# Split a Unicode string at line breaks, returning a list of Unicode
# strings. CRLF is considered to be one line break. If keepend is 0,
# the Line break characters are not included in the resulting strings.
# Return value: New reference.
list PyUnicode_Splitlines(object s, bint keepend)
# Translate a string by applying a character mapping table to it and
# return the resulting Unicode object.
#
# The mapping table must map Unicode ordinal integers to Unicode ordinal
# integers or None (causing deletion of the character).
#
# Mapping tables need only provide the __getitem__() interface;
# dictionaries and sequences work well. Unmapped character ordinals (ones
# which cause a LookupError) are left untouched and are copied as-is.
#
# errors has the usual meaning for codecs. It may be NULL which indicates
# to use the default error handling.
# Return value: New reference.
unicode PyUnicode_Translate(object str, object table, const char *errors)
# Join a sequence of strings using the given separator and return the
# resulting Unicode string.
# Return value: New reference.
unicode PyUnicode_Join(object separator, object seq)
# Return 1 if substr matches str[start:end] at the given tail end
# (direction == -1 means to do a prefix match, direction == 1 a
# suffix match), 0 otherwise.
# Return -1 if an error occurred.
Py_ssize_t PyUnicode_Tailmatch(object str, object substr,
Py_ssize_t start, Py_ssize_t end, int direction) except -1
# Return the first position of substr in str[start:end] using the given
# direction (direction == 1 means to do a forward search, direction == -1
# a backward search). The return value is the index of the first match;
# a value of -1 indicates that no match was found, and -2 indicates that an
# error occurred and an exception has been set.
Py_ssize_t PyUnicode_Find(object str, object substr, Py_ssize_t start, Py_ssize_t end, int direction) except -2
# Return the first position of the character ch in str[start:end] using
# the given direction (direction == 1 means to do a forward search,
# direction == -1 a backward search). The return value is the index of
# the first match; a value of -1 indicates that no match was found, and
# -2 indicates that an error occurred and an exception has been set.
# New in version 3.3.
Py_ssize_t PyUnicode_FindChar(object str, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int direction) except -2
# Return the number of non-overlapping occurrences of substr in
# str[start:end]. Return -1 if an error occurred.
Py_ssize_t PyUnicode_Count(object str, object substr, Py_ssize_t start, Py_ssize_t end) except -1
# Replace at most maxcount occurrences of substr in str with replstr and
# return the resulting Unicode object. maxcount == -1 means replace all
# occurrences.
# Return value: New reference.
unicode PyUnicode_Replace(object str, object substr, object replstr, Py_ssize_t maxcount)
# Compare two strings and return -1, 0, 1 for less than,
# equal, and greater than, respectively.
int PyUnicode_Compare(object left, object right) except? -1
# Compare a unicode object, uni, with string and return -1, 0, 1 for less than,
# equal, and greater than, respectively. It is best to pass only ASCII-encoded
# strings, but the function interprets the input string as ISO-8859-1 if it
# contains non-ASCII characters.
int PyUnicode_CompareWithASCIIString(object uni, const char *string)
# Rich compare two unicode strings and return one of the following:
#
# NULL in case an exception was raised
# Py_True or Py_False for successful comparisons
# Py_NotImplemented in case the type combination is unknown
#
# Note that Py_EQ and Py_NE comparisons can cause a UnicodeWarning in case
# the conversion of the arguments to Unicode fails with a UnicodeDecodeError.
#
# Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, and Py_LE.
object PyUnicode_RichCompare(object left, object right, int op)
# Return a new string object from format and args; this is analogous to
# format % args.
# Return value: New reference.
unicode PyUnicode_Format(object format, object args)
# Check whether element is contained in container and return true or false
# accordingly.
#
# element has to coerce to a one element Unicode string. -1 is returned
# if there was an error.
int PyUnicode_Contains(object container, object element) except -1
# Intern the argument *string in place. The argument must be the address
# of a pointer variable pointing to a Python unicode string object. If
# there is an existing interned string that is the same as *string, it sets
# *string to it (decrementing the reference count of the old string object
# and incrementing the reference count of the interned string object),
# otherwise it leaves *string alone and interns it (incrementing its reference
# count). (Clarification: even though there is a lot of talk about reference
# counts, think of this function as reference-count-neutral; you own the object
# after the call if and only if you owned it before the call.)
#void PyUnicode_InternInPlace(PyObject **string)
# A combination of PyUnicode_FromString() and PyUnicode_InternInPlace(),
# returning either a new unicode string object that has been interned, or
# a new ("owned") reference to an earlier interned string object with the
# same value.
unicode PyUnicode_InternFromString(const char *v)
# Codecs
# Create a Unicode object by decoding size bytes of the encoded
# string s. encoding and errors have the same meaning as the
# parameters of the same name in the unicode() builtin
# function. The codec to be used is looked up using the Python
# codec registry. Return NULL if an exception was raised by the
# codec.
object PyUnicode_Decode(char *s, Py_ssize_t size, char *encoding, char *errors)
# Encode the Py_UNICODE buffer of the given size and return a
# Python string object. encoding and errors have the same meaning
# as the parameters of the same name in the Unicode encode()
# method. The codec to be used is looked up using the Python codec
# registry. Return NULL if an exception was raised by the codec.
object PyUnicode_Encode(Py_UNICODE *s, Py_ssize_t size,
char *encoding, char *errors)
# Encode a Unicode object and return the result as Python string
# object. encoding and errors have the same meaning as the
# parameters of the same name in the Unicode encode() method. The
# codec to be used is looked up using the Python codec
# registry. Return NULL if an exception was raised by the codec.
object PyUnicode_AsEncodedString(object unicode, char *encoding, char *errors)
# These are the UTF-8 codec APIs:
# Create a Unicode object by decoding size bytes of the UTF-8
# encoded string s. Return NULL if an exception was raised by the
# codec.
unicode PyUnicode_DecodeUTF8(char *s, Py_ssize_t size, char *errors)
# If consumed is NULL, behave like PyUnicode_DecodeUTF8(). If
# consumed is not NULL, trailing incomplete UTF-8 byte sequences
# will not be treated as an error. Those bytes will not be decoded
# and the number of bytes that have been decoded will be stored in
# consumed. New in version 2.4.
unicode PyUnicode_DecodeUTF8Stateful(char *s, Py_ssize_t size, char *errors, Py_ssize_t *consumed)
# Encode the Py_UNICODE buffer of the given size using UTF-8 and
# return a Python string object. Return NULL if an exception was
# raised by the codec.
bytes PyUnicode_EncodeUTF8(Py_UNICODE *s, Py_ssize_t size, char *errors)
# Encode a Unicode objects using UTF-8 and return the result as Python bytes object. Error handling is ``strict''. Return NULL if an exception was raised by the codec.
bytes PyUnicode_AsUTF8String(object unicode)
# Return a pointer to the UTF-8 encoding of the Unicode object,
# and store the size of the encoded representation (in bytes) in size.
# The size argument can be NULL; in this case no size will be stored.
# The returned buffer always has an extra null byte appended
# (not included in size), regardless of whether there are any
# other null code points.
# In the case of an error, NULL is returned with an exception set and
# no size is stored.
# This caches the UTF-8 representation of the string in the Unicode
# object, and subsequent calls will return a pointer to the same buffer.
# The caller is not responsible for deallocating the buffer
const char* PyUnicode_AsUTF8AndSize(object unicode, Py_ssize_t *size)
# These are the UTF-16 codec APIs:
# Decode length bytes from a UTF-16 encoded buffer string and
# return the corresponding Unicode object. errors (if non-NULL)
# defines the error handling. It defaults to ``strict''.
#
# If byteorder is non-NULL, the decoder starts decoding using the
# given byte order:
#
# *byteorder == -1: little endian
# *byteorder == 0: native order
# *byteorder == 1: big endian
#
# and then switches if the first two bytes of the input data are a
# byte order mark (BOM) and the specified byte order is native
# order. This BOM is not copied into the resulting Unicode
# string. After completion, *byteorder is set to the current byte
# order at the.
#
# If byteorder is NULL, the codec starts in native order mode.
unicode PyUnicode_DecodeUTF16(char *s, Py_ssize_t size, char *errors, int *byteorder)
# If consumed is NULL, behave like PyUnicode_DecodeUTF16(). If
# consumed is not NULL, PyUnicode_DecodeUTF16Stateful() will not
# treat trailing incomplete UTF-16 byte sequences (such as an odd
# number of bytes or a split surrogate pair) as an error. Those
# bytes will not be decoded and the number of bytes that have been
# decoded will be stored in consumed. New in version 2.4.
unicode PyUnicode_DecodeUTF16Stateful(char *s, Py_ssize_t size, char *errors, int *byteorder, Py_ssize_t *consumed)
# Return a Python string object holding the UTF-16 encoded value
# of the Unicode data in s. If byteorder is not 0, output is
# written according to the following byte order:
#
# byteorder == -1: little endian
# byteorder == 0: native byte order (writes a BOM mark)
# byteorder == 1: big endian
#
# If byteorder is 0, the output string will always start with the
# Unicode BOM mark (U+FEFF). In the other two modes, no BOM mark
# is prepended.
#
# If Py_UNICODE_WIDE is defined, a single Py_UNICODE value may get
# represented as a surrogate pair. If it is not defined, each
# Py_UNICODE values is interpreted as an UCS-2 character.
bytes PyUnicode_EncodeUTF16(Py_UNICODE *s, Py_ssize_t size, char *errors, int byteorder)
# Return a Python string using the UTF-16 encoding in native byte
# order. The string always starts with a BOM mark. Error handling
# is ``strict''. Return NULL if an exception was raised by the
# codec.
bytes PyUnicode_AsUTF16String(object unicode)
# These are the ``Unicode Escape'' codec APIs:
# Create a Unicode object by decoding size bytes of the
# Unicode-Escape encoded string s. Return NULL if an exception was
# raised by the codec.
object PyUnicode_DecodeUnicodeEscape(char *s, Py_ssize_t size, char *errors)
# Encode the Py_UNICODE buffer of the given size using
# Unicode-Escape and return a Python string object. Return NULL if
# an exception was raised by the codec.
object PyUnicode_EncodeUnicodeEscape(Py_UNICODE *s, Py_ssize_t size)
# Encode a Unicode objects using Unicode-Escape and return the
# result as Python string object. Error handling is
# ``strict''. Return NULL if an exception was raised by the codec.
object PyUnicode_AsUnicodeEscapeString(object unicode)
# These are the ``Raw Unicode Escape'' codec APIs:
# Create a Unicode object by decoding size bytes of the
# Raw-Unicode-Escape encoded string s. Return NULL if an exception
# was raised by the codec.
object PyUnicode_DecodeRawUnicodeEscape(char *s, Py_ssize_t size, char *errors)
# Encode the Py_UNICODE buffer of the given size using
# Raw-Unicode-Escape and return a Python string object. Return
# NULL if an exception was raised by the codec.
object PyUnicode_EncodeRawUnicodeEscape(Py_UNICODE *s, Py_ssize_t size, char *errors)
# Encode a Unicode objects using Raw-Unicode-Escape and return the
# result as Python string object. Error handling is
# ``strict''. Return NULL if an exception was raised by the codec.
object PyUnicode_AsRawUnicodeEscapeString(object unicode)
# These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by the codecs during encoding.
# Create a Unicode object by decoding size bytes of the Latin-1
# encoded string s. Return NULL if an exception was raised by the
# codec.
unicode PyUnicode_DecodeLatin1(char *s, Py_ssize_t size, char *errors)
# Encode the Py_UNICODE buffer of the given size using Latin-1 and
# return a Python bytes object. Return NULL if an exception was
# raised by the codec.
bytes PyUnicode_EncodeLatin1(Py_UNICODE *s, Py_ssize_t size, char *errors)
# Encode a Unicode objects using Latin-1 and return the result as
# Python bytes object. Error handling is ``strict''. Return NULL
# if an exception was raised by the codec.
bytes PyUnicode_AsLatin1String(object unicode)
# These are the ASCII codec APIs. Only 7-bit ASCII data is
# accepted. All other codes generate errors.
# Create a Unicode object by decoding size bytes of the ASCII
# encoded string s. Return NULL if an exception was raised by the
# codec.
unicode PyUnicode_DecodeASCII(char *s, Py_ssize_t size, char *errors)
# Encode the Py_UNICODE buffer of the given size using ASCII and
# return a Python bytes object. Return NULL if an exception was
# raised by the codec.
bytes PyUnicode_EncodeASCII(Py_UNICODE *s, Py_ssize_t size, char *errors)
# Encode a Unicode objects using ASCII and return the result as
# Python bytes object. Error handling is ``strict''. Return NULL
# if an exception was raised by the codec.
bytes PyUnicode_AsASCIIString(object o)
# These are the mapping codec APIs:
#
# This codec is special in that it can be used to implement many
# different codecs (and this is in fact what was done to obtain most
# of the standard codecs included in the encodings package). The codec
# uses mapping to encode and decode characters.
#
# Decoding mappings must map single string characters to single
# Unicode characters, integers (which are then interpreted as Unicode
# ordinals) or None (meaning "undefined mapping" and causing an
# error).
#
# Encoding mappings must map single Unicode characters to single
# string characters, integers (which are then interpreted as Latin-1
# ordinals) or None (meaning "undefined mapping" and causing an
# error).
#
# The mapping objects provided must only support the __getitem__
# mapping interface.
#
# If a character lookup fails with a LookupError, the character is
# copied as-is meaning that its ordinal value will be interpreted as
# Unicode or Latin-1 ordinal resp. Because of this, mappings only need
# to contain those mappings which map characters to different code
# points.
# Create a Unicode object by decoding size bytes of the encoded
# string s using the given mapping object. Return NULL if an
# exception was raised by the codec. If mapping is NULL latin-1
# decoding will be done. Else it can be a dictionary mapping byte
# or a unicode string, which is treated as a lookup table. Byte
# values greater that the length of the string and U+FFFE
# "characters" are treated as "undefined mapping". Changed in
# version 2.4: Allowed unicode string as mapping argument.
object PyUnicode_DecodeCharmap(char *s, Py_ssize_t size, object mapping, char *errors)
# Encode the Py_UNICODE buffer of the given size using the given
# mapping object and return a Python string object. Return NULL if
# an exception was raised by the codec.
#
# Deprecated since version 3.3, will be removed in version 4.0.
object PyUnicode_EncodeCharmap(Py_UNICODE *s, Py_ssize_t size, object mapping, char *errors)
# Encode a Unicode objects using the given mapping object and
# return the result as Python string object. Error handling is
# ``strict''. Return NULL if an exception was raised by the codec.
object PyUnicode_AsCharmapString(object o, object mapping)
# The following codec API is special in that maps Unicode to Unicode.
# Translate a Py_UNICODE buffer of the given length by applying a
# character mapping table to it and return the resulting Unicode
# object. Return NULL when an exception was raised by the codec.
#
# The mapping table must map Unicode ordinal integers to Unicode
# ordinal integers or None (causing deletion of the character).
#
# Mapping tables need only provide the __getitem__() interface;
# dictionaries and sequences work well. Unmapped character
# ordinals (ones which cause a LookupError) are left untouched and
# are copied as-is.
#
# Deprecated since version 3.3, will be removed in version 4.0.
object PyUnicode_TranslateCharmap(Py_UNICODE *s, Py_ssize_t size,
object table, char *errors)
# These are the MBCS codec APIs. They are currently only available on
# Windows and use the Win32 MBCS converters to implement the
# conversions. Note that MBCS (or DBCS) is a class of encodings, not
# just one. The target encoding is defined by the user settings on the
# machine running the codec.
# Create a Unicode object by decoding size bytes of the MBCS
# encoded string s. Return NULL if an exception was raised by the
# codec.
unicode PyUnicode_DecodeMBCS(char *s, Py_ssize_t size, char *errors)
# If consumed is NULL, behave like PyUnicode_DecodeMBCS(). If
# consumed is not NULL, PyUnicode_DecodeMBCSStateful() will not
# decode trailing lead byte and the number of bytes that have been
# decoded will be stored in consumed. New in version 2.5.
# NOTE: Python 2.x uses 'int' values for 'size' and 'consumed' (changed in 3.0)
unicode PyUnicode_DecodeMBCSStateful(char *s, Py_ssize_t size, char *errors, Py_ssize_t *consumed)
# Encode the Py_UNICODE buffer of the given size using MBCS and
# return a Python string object. Return NULL if an exception was
# raised by the codec.
bytes PyUnicode_EncodeMBCS(Py_UNICODE *s, Py_ssize_t size, char *errors)
# Encode a Unicode objects using MBCS and return the result as
# Python string object. Error handling is ``strict''. Return NULL
# if an exception was raised by the codec.
bytes PyUnicode_AsMBCSString(object o)
# Encode the Unicode object using the specified code page and return
# a Python bytes object. Return NULL if an exception was raised by the
# codec. Use CP_ACP code page to get the MBCS encoder.
#
# New in version 3.3.
bytes PyUnicode_EncodeCodePage(int code_page, object unicode, const char *errors)
# Py_UCS4 helpers (new in CPython 3.3)
# These utility functions work on strings of Py_UCS4 characters and
# otherwise behave like the C standard library functions with the same name.
size_t Py_UCS4_strlen(const Py_UCS4 *u)
Py_UCS4* Py_UCS4_strcpy(Py_UCS4 *s1, const Py_UCS4 *s2)
Py_UCS4* Py_UCS4_strncpy(Py_UCS4 *s1, const Py_UCS4 *s2, size_t n)
Py_UCS4* Py_UCS4_strcat(Py_UCS4 *s1, const Py_UCS4 *s2)
int Py_UCS4_strcmp(const Py_UCS4 *s1, const Py_UCS4 *s2)
int Py_UCS4_strncmp(const Py_UCS4 *s1, const Py_UCS4 *s2, size_t n)
Py_UCS4* Py_UCS4_strchr(const Py_UCS4 *s, Py_UCS4 c)
Py_UCS4* Py_UCS4_strrchr(const Py_UCS4 *s, Py_UCS4 c)

View file

@ -0,0 +1,32 @@
# Python version constants
#
# It's better to evaluate these at runtime (i.e. C compile time) using
#
# if PY_MAJOR_VERSION >= 3:
# do_stuff_in_Py3_0_and_later()
# if PY_VERSION_HEX >= 0x02070000:
# do_stuff_in_Py2_7_and_later()
#
# than using the IF/DEF statements, which are evaluated at Cython
# compile time. This will keep your C code portable.
cdef extern from *:
# the complete version, e.g. 0x010502B2 == 1.5.2b2
int PY_VERSION_HEX
# the individual sections as plain numbers
int PY_MAJOR_VERSION
int PY_MINOR_VERSION
int PY_MICRO_VERSION
int PY_RELEASE_LEVEL
int PY_RELEASE_SERIAL
# Note: PY_RELEASE_LEVEL is one of
# 0xA (alpha)
# 0xB (beta)
# 0xC (release candidate)
# 0xF (final)
char PY_VERSION[]
char PY_PATCHLEVEL_REVISION[]

View file

@ -0,0 +1,42 @@
from .object cimport PyObject
cdef extern from "Python.h":
bint PyWeakref_Check(object ob)
# Return true if ob is either a reference or proxy object.
bint PyWeakref_CheckRef(object ob)
# Return true if ob is a reference object.
bint PyWeakref_CheckProxy(ob)
# Return true if *ob* is a proxy object.
object PyWeakref_NewRef(object ob, object callback)
# Return a weak reference object for the object ob. This will
# always return a new reference, but is not guaranteed to create a
# new object; an existing reference object may be returned. The
# second parameter, callback, can be a callable object that
# receives notification when ob is garbage collected; it should
# accept a single parameter, which will be the weak reference
# object itself. callback may also be None or NULL. If ob is not
# a weakly-referencable object, or if callback is not callable,
# None, or NULL, this will return NULL and raise TypeError.
object PyWeakref_NewProxy(object ob, object callback)
# Return a weak reference proxy object for the object ob. This
# will always return a new reference, but is not guaranteed to
# create a new object; an existing proxy object may be returned.
# The second parameter, callback, can be a callable object that
# receives notification when ob is garbage collected; it should
# accept a single parameter, which will be the weak reference
# object itself. callback may also be None or NULL. If ob is not
# a weakly-referencable object, or if callback is not callable,
# None, or NULL, this will return NULL and raise TypeError.
PyObject* PyWeakref_GetObject(object ref) except NULL
# Return the referenced object from a weak reference, ref. If the
# referent is no longer live, returns None.
PyObject* PyWeakref_GET_OBJECT(object ref)
# Similar to PyWeakref_GetObject, but implemented as a macro that
# does no error checking.

View file

@ -0,0 +1 @@
# empty file

View file

@ -0,0 +1,128 @@
# 7.5 Errors <errno.h>
cdef extern from "<errno.h>" nogil:
enum:
EPERM
ENOENT
ESRCH
EINTR
EIO
ENXIO
E2BIG
ENOEXEC
EBADF
ECHILD
EAGAIN
ENOMEM
EACCES
EFAULT
ENOTBLK
EBUSY
EEXIST
EXDEV
ENODEV
ENOTDIR
EISDIR
EINVAL
ENFILE
EMFILE
ENOTTY
ETXTBSY
EFBIG
ENOSPC
ESPIPE
EROFS
EMLINK
EPIPE
EDOM
ERANGE
EDEADLOCK
ENAMETOOLONG
ENOLCK
ENOSYS
ENOTEMPTY
ELOOP
ENOMSG
EIDRM
ECHRNG
EL2NSYNC
EL3HLT
EL3RST
ELNRNG
EUNATCH
ENOCSI
EL2HLT
EBADE
EBADR
EXFULL
ENOANO
EBADRQC
EBADSLT
EBFONT
ENOSTR
ENODATA
ENOATTR
ETIME
ENOSR
ENONET
ENOPKG
EREMOTE
ENOLINK
EADV
ESRMNT
ECOMM
EPROTO
EMULTIHOP
EDOTDOT
EBADMSG
EOVERFLOW
ENOTUNIQ
EBADFD
EREMCHG
ELIBACC
ELIBBAD
ELIBSCN
ELIBMAX
ELIBEXEC
EILSEQ
ERESTART
ESTRPIPE
EUSERS
ENOTSOCK
EDESTADDRREQ
EMSGSIZE
EPROTOTYPE
ENOPROTOOPT
EPROTONOSUPPORT
ESOCKTNOSUPPORT
EOPNOTSUPP
EPFNOSUPPORT
EAFNOSUPPORT
EADDRINUSE
EADDRNOTAVAIL
ENETDOWN
ENETUNREACH
ENETRESET
ECONNABORTED
ECONNRESET
ENOBUFS
EISCONN
ENOTCONN
ESHUTDOWN
ETOOMANYREFS
ETIMEDOUT
ECONNREFUSED
EHOSTDOWN
EHOSTUNREACH
EALREADY
EINPROGRESS
ESTALE
EUCLEAN
ENOTNAM
ENAVAIL
EISNAM
EREMOTEIO
EDQUOT
int errno

View file

@ -0,0 +1,43 @@
# 5.2.4.2.2 Characteristics of floating types <float.h>
cdef extern from "<float.h>":
const float FLT_RADIX
const float FLT_MANT_DIG
const double DBL_MANT_DIG
const long double LDBL_MANT_DIG
const double DECIMAL_DIG
const float FLT_DIG
const double DBL_DIG
const long double LDBL_DIG
const float FLT_MIN_EXP
const double DBL_MIN_EXP
const long double LDBL_MIN_EXP
const float FLT_MIN_10_EXP
const double DBL_MIN_10_EXP
const long double LDBL_MIN_10_EXP
const float FLT_MAX_EXP
const double DBL_MAX_EXP
const long double LDBL_MAX_EXP
const float FLT_MAX_10_EXP
const double DBL_MAX_10_EXP
const long double LDBL_MAX_10_EXP
const float FLT_MAX
const double DBL_MAX
const long double LDBL_MAX
const float FLT_EPSILON
const double DBL_EPSILON
const long double LDBL_EPSILON
const float FLT_MIN
const double DBL_MIN
const long double LDBL_MIN

View file

@ -0,0 +1,28 @@
# 5.2.4.2.1 Sizes of integer types <limits.h>
cdef extern from "<limits.h>":
const int CHAR_BIT
const int MB_LEN_MAX
const char CHAR_MIN
const char CHAR_MAX
const signed char SCHAR_MIN
const signed char SCHAR_MAX
const unsigned char UCHAR_MAX
const short SHRT_MIN
const short SHRT_MAX
const unsigned short USHRT_MAX
const int INT_MIN
const int INT_MAX
const unsigned int UINT_MAX
const long LONG_MIN
const long LONG_MAX
const unsigned long ULONG_MAX
const long long LLONG_MIN
const long long LLONG_MAX
const unsigned long long ULLONG_MAX

View file

@ -0,0 +1,46 @@
# 7.11 Localization <locale.h>
# deprecated cimport for backwards compatibility:
from libc.string cimport const_char
cdef extern from "<locale.h>" nogil:
struct lconv:
char *decimal_point
char *thousands_sep
char *grouping
char *mon_decimal_point
char *mon_thousands_sep
char *mon_grouping
char *positive_sign
char *negative_sign
char *currency_symbol
char frac_digits
char p_cs_precedes
char n_cs_precedes
char p_sep_by_space
char n_sep_by_space
char p_sign_posn
char n_sign_posn
char *int_curr_symbol
char int_frac_digits
char int_p_cs_precedes
char int_n_cs_precedes
char int_p_sep_by_space
char int_n_sep_by_space
char int_p_sign_posn
char int_n_sign_posn
enum: LC_ALL
enum: LC_COLLATE
enum: LC_CTYPE
enum: LC_MONETARY
enum: LC_NUMERIC
enum: LC_TIME
# 7.11.1 Locale control
char *setlocale (int category, const char *locale)
# 7.11.2 Numeric formatting convention inquiry
lconv *localeconv ()

View file

@ -0,0 +1,112 @@
cdef extern from "<math.h>" nogil:
const double M_E
const double e "M_E" # as in Python's math module
const double M_LOG2E
const double M_LOG10E
const double M_LN2
const double M_LN10
const double M_PI
const double pi "M_PI" # as in Python's math module
const double M_PI_2
const double M_PI_4
const double M_1_PI
const double M_2_PI
const double M_2_SQRTPI
const double M_SQRT2
const double M_SQRT1_2
# C99 constants
const float INFINITY
const float NAN
# note: not providing "nan" and "inf" aliases here as nan() is a function in C
const double HUGE_VAL
const float HUGE_VALF
const long double HUGE_VALL
double acos(double x)
double asin(double x)
double atan(double x)
double atan2(double y, double x)
double cos(double x)
double sin(double x)
double tan(double x)
double cosh(double x)
double sinh(double x)
double tanh(double x)
double acosh(double x)
double asinh(double x)
double atanh(double x)
double hypot(double x, double y)
double exp(double x)
double exp2(double x)
double expm1(double x)
double log(double x)
double logb(double x)
double log2(double x)
double log10(double x)
double log1p(double x)
int ilogb(double x)
double lgamma(double x)
double tgamma(double x)
double frexp(double x, int* exponent)
double ldexp(double x, int exponent)
double modf(double x, double* iptr)
double fmod(double x, double y)
double remainder(double x, double y)
double remquo(double x, double y, int *quot)
double pow(double x, double y)
double sqrt(double x)
double cbrt(double x)
double fabs(double x)
double ceil(double x)
double floor(double x)
double trunc(double x)
double rint(double x)
double round(double x)
double nearbyint(double x)
double nextafter(double, double)
double nexttoward(double, long double)
long long llrint(double)
long lrint(double)
long long llround(double)
long lround(double)
double copysign(double, double)
float copysignf(float, float)
long double copysignl(long double, long double)
double erf(double)
float erff(float)
long double erfl(long double)
double erfc(double)
float erfcf(float)
long double erfcl(long double)
double fdim(double x, double y)
double fma(double x, double y, double z)
double fmax(double x, double y)
double fmin(double x, double y)
double scalbln(double x, long n)
double scalbn(double x, int n)
double nan(const char*)
int isinf(long double) # -1 / 0 / 1
bint isfinite(long double)
bint isnan(long double)
bint isnormal(long double)
bint signbit(long double)
int fpclassify(long double)
const int FP_NAN
const int FP_INFINITE
const int FP_ZERO
const int FP_SUBNORMAL
const int FP_NORMAL

View file

@ -0,0 +1,10 @@
cdef extern from "<setjmp.h>" nogil:
ctypedef struct jmp_buf:
pass
int setjmp(jmp_buf state)
void longjmp(jmp_buf state, int value)
ctypedef struct sigjmp_buf:
pass
int sigsetjmp(sigjmp_buf state, int savesigs)
void siglongjmp(sigjmp_buf state, int value)

View file

@ -0,0 +1,64 @@
# 7.14 Signal handling <signal.h>
ctypedef void (*sighandler_t)(int SIGNUM) nogil
cdef extern from "<signal.h>" nogil:
ctypedef int sig_atomic_t
sighandler_t SIG_DFL
sighandler_t SIG_IGN
sighandler_t SIG_ERR
sighandler_t signal (int signum, sighandler_t action)
int raise_"raise" (int signum)
# Signals
enum:
# Program Error
SIGFPE
SIGILL
SIGSEGV
SIGBUS
SIGABRT
SIGIOT
SIGTRAP
SIGEMT
SIGSYS
SIGSTKFLT
# Termination
SIGTERM
SIGINT
SIGQUIT
SIGKILL
SIGHUP
# Alarm
SIGALRM
SIGVTALRM
SIGPROF
# Asynchronous I/O
SIGIO
SIGURG
SIGPOLL
# Job Control
SIGCHLD
SIGCLD
SIGCONT
SIGSTOP
SIGTSTP
SIGTTIN
SIGTTOU
# Operation Error
SIGPIPE
SIGLOST
SIGXCPU
SIGXFSZ
SIGPWR
# Miscellaneous
SIGUSR1
SIGUSR2
SIGWINCH
SIGINFO
# Real-time signals
SIGRTMIN
SIGRTMAX

View file

@ -0,0 +1,9 @@
# 7.17 Common definitions <stddef.h>
cdef extern from "<stddef.h>":
ctypedef signed int ptrdiff_t
ctypedef unsigned int size_t
ctypedef int wchar_t

View file

@ -0,0 +1,105 @@
# Longness only used for type promotion.
# Actual compile time size used for conversions.
# 7.18 Integer types <stdint.h>
cdef extern from "<stdint.h>" nogil:
# 7.18.1 Integer types
# 7.18.1.1 Exact-width integer types
ctypedef signed char int8_t
ctypedef signed short int16_t
ctypedef signed int int32_t
ctypedef signed long int64_t
ctypedef unsigned char uint8_t
ctypedef unsigned short uint16_t
ctypedef unsigned int uint32_t
ctypedef unsigned long long uint64_t
# 7.18.1.2 Minimum-width integer types
ctypedef signed char int_least8_t
ctypedef signed short int_least16_t
ctypedef signed int int_least32_t
ctypedef signed long int_least64_t
ctypedef unsigned char uint_least8_t
ctypedef unsigned short uint_least16_t
ctypedef unsigned int uint_least32_t
ctypedef unsigned long long uint_least64_t
# 7.18.1.3 Fastest minimum-width integer types
ctypedef signed char int_fast8_t
ctypedef signed short int_fast16_t
ctypedef signed int int_fast32_t
ctypedef signed long int_fast64_t
ctypedef unsigned char uint_fast8_t
ctypedef unsigned short uint_fast16_t
ctypedef unsigned int uint_fast32_t
ctypedef unsigned long long uint_fast64_t
# 7.18.1.4 Integer types capable of holding object pointers
ctypedef ssize_t intptr_t
ctypedef size_t uintptr_t
# 7.18.1.5 Greatest-width integer types
ctypedef signed long long intmax_t
ctypedef unsigned long long uintmax_t
# 7.18.2 Limits of specified-width integer types
# 7.18.2.1 Limits of exact-width integer types
int8_t INT8_MIN
int16_t INT16_MIN
int32_t INT32_MIN
int64_t INT64_MIN
int8_t INT8_MAX
int16_t INT16_MAX
int32_t INT32_MAX
int64_t INT64_MAX
uint8_t UINT8_MAX
uint16_t UINT16_MAX
uint32_t UINT32_MAX
uint64_t UINT64_MAX
#7.18.2.2 Limits of minimum-width integer types
int_least8_t INT_LEAST8_MIN
int_least16_t INT_LEAST16_MIN
int_least32_t INT_LEAST32_MIN
int_least64_t INT_LEAST64_MIN
int_least8_t INT_LEAST8_MAX
int_least16_t INT_LEAST16_MAX
int_least32_t INT_LEAST32_MAX
int_least64_t INT_LEAST64_MAX
uint_least8_t UINT_LEAST8_MAX
uint_least16_t UINT_LEAST16_MAX
uint_least32_t UINT_LEAST32_MAX
uint_least64_t UINT_LEAST64_MAX
#7.18.2.3 Limits of fastest minimum-width integer types
int_fast8_t INT_FAST8_MIN
int_fast16_t INT_FAST16_MIN
int_fast32_t INT_FAST32_MIN
int_fast64_t INT_FAST64_MIN
int_fast8_t INT_FAST8_MAX
int_fast16_t INT_FAST16_MAX
int_fast32_t INT_FAST32_MAX
int_fast64_t INT_FAST64_MAX
uint_fast8_t UINT_FAST8_MAX
uint_fast16_t UINT_FAST16_MAX
uint_fast32_t UINT_FAST32_MAX
uint_fast64_t UINT_FAST64_MAX
#7.18.2.4 Limits of integer types capable of holding object pointers
enum: INTPTR_MIN
enum: INTPTR_MAX
enum: UINTPTR_MAX
# 7.18.2.5 Limits of greatest-width integer types
enum: INTMAX_MAX
enum: INTMAX_MIN
enum: UINTMAX_MAX
# 7.18.3 Limits of other integer types
# ptrdiff_t
enum: PTRDIFF_MIN
enum: PTRDIFF_MAX
# sig_atomic_t
enum: SIG_ATOMIC_MIN
enum: SIG_ATOMIC_MAX
# size_t
size_t SIZE_MAX
# wchar_t
enum: WCHAR_MIN
enum: WCHAR_MAX
# wint_t
enum: WINT_MIN
enum: WINT_MAX

View file

@ -0,0 +1,80 @@
# 7.19 Input/output <stdio.h>
# deprecated cimports for backwards compatibility:
from libc.string cimport const_char, const_void
cdef extern from "<stdio.h>" nogil:
ctypedef struct FILE
cdef FILE *stdin
cdef FILE *stdout
cdef FILE *stderr
enum: FOPEN_MAX
enum: FILENAME_MAX
FILE *fopen (const char *filename, const char *opentype)
FILE *freopen (const char *filename, const char *opentype, FILE *stream)
FILE *fdopen (int fdescriptor, const char *opentype)
int fclose (FILE *stream)
int remove (const char *filename)
int rename (const char *oldname, const char *newname)
FILE *tmpfile ()
int remove (const char *pathname)
int rename (const char *oldpath, const char *newpath)
enum: _IOFBF
enum: _IOLBF
enum: _IONBF
int setvbuf (FILE *stream, char *buf, int mode, size_t size)
enum: BUFSIZ
void setbuf (FILE *stream, char *buf)
size_t fread (void *data, size_t size, size_t count, FILE *stream)
size_t fwrite (const void *data, size_t size, size_t count, FILE *stream)
int fflush (FILE *stream)
enum: EOF
void clearerr (FILE *stream)
int feof (FILE *stream)
int ferror (FILE *stream)
enum: SEEK_SET
enum: SEEK_CUR
enum: SEEK_END
int fseek (FILE *stream, long int offset, int whence)
void rewind (FILE *stream)
long int ftell (FILE *stream)
ctypedef struct fpos_t
ctypedef const fpos_t const_fpos_t "const fpos_t"
int fgetpos (FILE *stream, fpos_t *position)
int fsetpos (FILE *stream, const fpos_t *position)
int scanf (const char *template, ...)
int sscanf (const char *s, const char *template, ...)
int fscanf (FILE *stream, const char *template, ...)
int printf (const char *template, ...)
int sprintf (char *s, const char *template, ...)
int snprintf (char *s, size_t size, const char *template, ...)
int fprintf (FILE *stream, const char *template, ...)
void perror (const char *message)
char *gets (char *s)
char *fgets (char *s, int count, FILE *stream)
int getchar ()
int fgetc (FILE *stream)
int getc (FILE *stream)
int ungetc (int c, FILE *stream)
int puts (const char *s)
int fputs (const char *s, FILE *stream)
int putchar (int c)
int fputc (int c, FILE *stream)
int putc (int c, FILE *stream)
size_t getline(char **lineptr, size_t *n, FILE *stream)

View file

@ -0,0 +1,72 @@
# 7.20 General utilities <stdlib.h>
# deprecated cimports for backwards compatibility:
from libc.string cimport const_char, const_void
cdef extern from "<stdlib.h>" nogil:
# 7.20.1 Numeric conversion functions
int atoi (const char *string)
long atol (const char *string)
long long atoll (const char *string)
double atof (const char *string)
long strtol (const char *string, char **tailptr, int base)
unsigned long int strtoul (const char *string, char **tailptr, int base)
long long int strtoll (const char *string, char **tailptr, int base)
unsigned long long int strtoull (const char *string, char **tailptr, int base)
float strtof (const char *string, char **tailptr)
double strtod (const char *string, char **tailptr)
long double strtold (const char *string, char **tailptr)
# 7.20.2 Pseudo-random sequence generation functions
enum: RAND_MAX
int rand ()
void srand (unsigned int seed)
# 7.20.3 Memory management functions
void *calloc (size_t count, size_t eltsize)
void free (void *ptr)
void *malloc (size_t size)
void *realloc (void *ptr, size_t newsize)
# 7.20.4 Communication with the environment
enum: EXIT_FAILURE
enum: EXIT_SUCCESS
void exit (int status)
void _exit (int status)
int atexit (void (*function) ())
void abort ()
char *getenv (const char *name)
int system (const char *command)
#7.20.5 Searching and sorting utilities
void *bsearch (const void *key, const void *array,
size_t count, size_t size,
int (*compare)(const void *, const void *))
void qsort (void *array, size_t count, size_t size,
int (*compare)(const void *, const void *))
# 7.20.6 Integer arithmetic functions
int abs (int number)
long int labs (long int number)
long long int llabs (long long int number)
ctypedef struct div_t:
int quot
int rem
div_t div (int numerator, int denominator)
ctypedef struct ldiv_t:
long int quot
long int rem
ldiv_t ldiv (long int numerator, long int denominator)
ctypedef struct lldiv_t:
long long int quot
long long int rem
lldiv_t lldiv (long long int numerator, long long int denominator)
# 7.20.7 Multibyte/wide character conversion functions
# XXX TODO
# 7.20.8 Multibyte/wide string conversion functions
# XXX TODO

View file

@ -0,0 +1,50 @@
# 7.21 String handling <string.h>
cdef extern from *:
# deprecated backwards compatibility declarations
ctypedef const char const_char "const char"
ctypedef const signed char const_schar "const signed char"
ctypedef const unsigned char const_uchar "const unsigned char"
ctypedef const void const_void "const void"
cdef extern from "<string.h>" nogil:
void *memcpy (void *pto, const void *pfrom, size_t size)
void *memmove (void *pto, const void *pfrom, size_t size)
void *memset (void *block, int c, size_t size)
int memcmp (const void *a1, const void *a2, size_t size)
void *memchr (const void *block, int c, size_t size)
void *memchr (const void *block, int c, size_t size)
void *memrchr (const void *block, int c, size_t size)
size_t strlen (const char *s)
char *strcpy (char *pto, const char *pfrom)
char *strncpy (char *pto, const char *pfrom, size_t size)
char *strdup (const char *s)
char *strndup (const char *s, size_t size)
char *strcat (char *pto, const char *pfrom)
char *strncat (char *pto, const char *pfrom, size_t size)
int strcmp (const char *s1, const char *s2)
int strcasecmp (const char *s1, const char *s2)
int strncmp (const char *s1, const char *s2, size_t size)
int strncasecmp (const char *s1, const char *s2, size_t n)
int strcoll (const char *s1, const char *s2)
size_t strxfrm (char *pto, const char *pfrom, size_t size)
char *strerror (int errnum)
char *strchr (const char *string, int c)
char *strrchr (const char *string, int c)
char *strstr (const char *haystack, const char *needle)
char *strcasestr (const char *haystack, const char *needle)
size_t strcspn (const char *string, const char *stopset)
size_t strspn (const char *string, const char *set)
char * strpbrk (const char *string, const char *stopset)
char *strtok (char *newstring, const char *delimiters)
char *strsep (char **string_ptr, const char *delimiter)

View file

@ -0,0 +1,46 @@
# http://en.wikipedia.org/wiki/C_date_and_time_functions
from libc.stddef cimport wchar_t
cdef extern from "<time.h>" nogil:
ctypedef long clock_t
ctypedef long time_t
enum: CLOCKS_PER_SEC
clock_t clock() # CPU time
time_t time(time_t *) # wall clock time since Unix epoch
cdef struct tm:
int tm_sec
int tm_min
int tm_hour
int tm_mday
int tm_mon
int tm_year
int tm_wday
int tm_yday
int tm_isdst
char *tm_zone
long tm_gmtoff
int daylight # global state
long timezone
char *tzname[2]
void tzset()
char *asctime(const tm *)
char *asctime_r(const tm *, char *)
char *ctime(const time_t *)
char *ctime_r(const time_t *, char *)
double difftime(time_t, time_t)
tm *getdate(const char *)
tm *gmtime(const time_t *)
tm *gmtime_r(const time_t *, tm *)
tm *localtime(const time_t *)
tm *localtime_r(const time_t *, tm *)
time_t mktime(tm *)
size_t strftime(char *, size_t, const char *, const tm *)
size_t wcsftime(wchar_t *str, size_t cnt, const wchar_t *fmt, tm *time)
# POSIX not stdC
char *strptime(const char *, const char *, tm *)

View file

@ -0,0 +1,4 @@
cdef extern from *:
ctypedef bint bool
ctypedef void* nullptr_t
nullptr_t nullptr

View file

@ -0,0 +1,43 @@
from libcpp cimport bool
cdef extern from "<algorithm>" namespace "std" nogil:
# Sorting and searching
bool binary_search[Iter, T](Iter first, Iter last, const T& value)
bool binary_search[Iter, T, Compare](Iter first, Iter last, const T& value,
Compare comp)
Iter lower_bound[Iter, T](Iter first, Iter last, const T& value)
Iter lower_bound[Iter, T, Compare](Iter first, Iter last, const T& value,
Compare comp)
Iter upper_bound[Iter, T](Iter first, Iter last, const T& value)
Iter upper_bound[Iter, T, Compare](Iter first, Iter last, const T& value,
Compare comp)
void partial_sort[Iter](Iter first, Iter middle, Iter last)
void partial_sort[Iter, Compare](Iter first, Iter middle, Iter last,
Compare comp)
void sort[Iter](Iter first, Iter last)
void sort[Iter, Compare](Iter first, Iter last, Compare comp)
# Removing duplicates
Iter unique[Iter](Iter first, Iter last)
Iter unique[Iter, BinaryPredicate](Iter first, Iter last, BinaryPredicate p)
# Binary heaps (priority queues)
void make_heap[Iter](Iter first, Iter last)
void make_heap[Iter, Compare](Iter first, Iter last, Compare comp)
void pop_heap[Iter](Iter first, Iter last)
void pop_heap[Iter, Compare](Iter first, Iter last, Compare comp)
void push_heap[Iter](Iter first, Iter last)
void push_heap[Iter, Compare](Iter first, Iter last, Compare comp)
void sort_heap[Iter](Iter first, Iter last)
void sort_heap[Iter, Compare](Iter first, Iter last, Compare comp)
# Copy
OutputIter copy[InputIter,OutputIter](InputIter,InputIter,OutputIter)

Some files were not shown because too many files have changed in this diff Show more