292 lines
9.8 KiB
C
292 lines
9.8 KiB
C
|
/////////////// Header.proto ///////////////
|
||
|
//@proto_block: h_code
|
||
|
|
||
|
#if !defined(CYTHON_CCOMPLEX)
|
||
|
#if defined(__cplusplus)
|
||
|
#define CYTHON_CCOMPLEX 1
|
||
|
#elif defined(_Complex_I)
|
||
|
#define CYTHON_CCOMPLEX 1
|
||
|
#else
|
||
|
#define CYTHON_CCOMPLEX 0
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#if CYTHON_CCOMPLEX
|
||
|
#ifdef __cplusplus
|
||
|
#include <complex>
|
||
|
#else
|
||
|
#include <complex.h>
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__)
|
||
|
#undef _Complex_I
|
||
|
#define _Complex_I 1.0fj
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/////////////// RealImag.proto ///////////////
|
||
|
|
||
|
#if CYTHON_CCOMPLEX
|
||
|
#ifdef __cplusplus
|
||
|
#define __Pyx_CREAL(z) ((z).real())
|
||
|
#define __Pyx_CIMAG(z) ((z).imag())
|
||
|
#else
|
||
|
#define __Pyx_CREAL(z) (__real__(z))
|
||
|
#define __Pyx_CIMAG(z) (__imag__(z))
|
||
|
#endif
|
||
|
#else
|
||
|
#define __Pyx_CREAL(z) ((z).real)
|
||
|
#define __Pyx_CIMAG(z) ((z).imag)
|
||
|
#endif
|
||
|
|
||
|
#if defined(__cplusplus) && CYTHON_CCOMPLEX \
|
||
|
&& (defined(_WIN32) || defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5 || __GNUC__ == 4 && __GNUC_MINOR__ >= 4 )) || __cplusplus >= 201103)
|
||
|
#define __Pyx_SET_CREAL(z,x) ((z).real(x))
|
||
|
#define __Pyx_SET_CIMAG(z,y) ((z).imag(y))
|
||
|
#else
|
||
|
#define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x)
|
||
|
#define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y)
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/////////////// Declarations.proto ///////////////
|
||
|
//@proto_block: complex_type_declarations
|
||
|
|
||
|
#if CYTHON_CCOMPLEX
|
||
|
#ifdef __cplusplus
|
||
|
typedef ::std::complex< {{real_type}} > {{type_name}};
|
||
|
#else
|
||
|
typedef {{real_type}} _Complex {{type_name}};
|
||
|
#endif
|
||
|
#else
|
||
|
typedef struct { {{real_type}} real, imag; } {{type_name}};
|
||
|
#endif
|
||
|
|
||
|
static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}}, {{real_type}});
|
||
|
|
||
|
/////////////// Declarations ///////////////
|
||
|
|
||
|
#if CYTHON_CCOMPLEX
|
||
|
#ifdef __cplusplus
|
||
|
static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}} x, {{real_type}} y) {
|
||
|
return ::std::complex< {{real_type}} >(x, y);
|
||
|
}
|
||
|
#else
|
||
|
static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}} x, {{real_type}} y) {
|
||
|
return x + y*({{type}})_Complex_I;
|
||
|
}
|
||
|
#endif
|
||
|
#else
|
||
|
static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}} x, {{real_type}} y) {
|
||
|
{{type}} z;
|
||
|
z.real = x;
|
||
|
z.imag = y;
|
||
|
return z;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/////////////// ToPy.proto ///////////////
|
||
|
|
||
|
#define __pyx_PyComplex_FromComplex(z) \
|
||
|
PyComplex_FromDoubles((double)__Pyx_CREAL(z), \
|
||
|
(double)__Pyx_CIMAG(z))
|
||
|
|
||
|
|
||
|
/////////////// FromPy.proto ///////////////
|
||
|
|
||
|
static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject*);
|
||
|
|
||
|
/////////////// FromPy ///////////////
|
||
|
|
||
|
static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject* o) {
|
||
|
Py_complex cval;
|
||
|
#if !CYTHON_COMPILING_IN_PYPY
|
||
|
if (PyComplex_CheckExact(o))
|
||
|
cval = ((PyComplexObject *)o)->cval;
|
||
|
else
|
||
|
#endif
|
||
|
cval = PyComplex_AsCComplex(o);
|
||
|
return {{type_name}}_from_parts(
|
||
|
({{real_type}})cval.real,
|
||
|
({{real_type}})cval.imag);
|
||
|
}
|
||
|
|
||
|
|
||
|
/////////////// Arithmetic.proto ///////////////
|
||
|
|
||
|
#if CYTHON_CCOMPLEX
|
||
|
#define __Pyx_c_eq{{func_suffix}}(a, b) ((a)==(b))
|
||
|
#define __Pyx_c_sum{{func_suffix}}(a, b) ((a)+(b))
|
||
|
#define __Pyx_c_diff{{func_suffix}}(a, b) ((a)-(b))
|
||
|
#define __Pyx_c_prod{{func_suffix}}(a, b) ((a)*(b))
|
||
|
#define __Pyx_c_quot{{func_suffix}}(a, b) ((a)/(b))
|
||
|
#define __Pyx_c_neg{{func_suffix}}(a) (-(a))
|
||
|
#ifdef __cplusplus
|
||
|
#define __Pyx_c_is_zero{{func_suffix}}(z) ((z)==({{real_type}})0)
|
||
|
#define __Pyx_c_conj{{func_suffix}}(z) (::std::conj(z))
|
||
|
#if {{is_float}}
|
||
|
#define __Pyx_c_abs{{func_suffix}}(z) (::std::abs(z))
|
||
|
#define __Pyx_c_pow{{func_suffix}}(a, b) (::std::pow(a, b))
|
||
|
#endif
|
||
|
#else
|
||
|
#define __Pyx_c_is_zero{{func_suffix}}(z) ((z)==0)
|
||
|
#define __Pyx_c_conj{{func_suffix}}(z) (conj{{m}}(z))
|
||
|
#if {{is_float}}
|
||
|
#define __Pyx_c_abs{{func_suffix}}(z) (cabs{{m}}(z))
|
||
|
#define __Pyx_c_pow{{func_suffix}}(a, b) (cpow{{m}}(a, b))
|
||
|
#endif
|
||
|
#endif
|
||
|
#else
|
||
|
static CYTHON_INLINE int __Pyx_c_eq{{func_suffix}}({{type}}, {{type}});
|
||
|
static CYTHON_INLINE {{type}} __Pyx_c_sum{{func_suffix}}({{type}}, {{type}});
|
||
|
static CYTHON_INLINE {{type}} __Pyx_c_diff{{func_suffix}}({{type}}, {{type}});
|
||
|
static CYTHON_INLINE {{type}} __Pyx_c_prod{{func_suffix}}({{type}}, {{type}});
|
||
|
static CYTHON_INLINE {{type}} __Pyx_c_quot{{func_suffix}}({{type}}, {{type}});
|
||
|
static CYTHON_INLINE {{type}} __Pyx_c_neg{{func_suffix}}({{type}});
|
||
|
static CYTHON_INLINE int __Pyx_c_is_zero{{func_suffix}}({{type}});
|
||
|
static CYTHON_INLINE {{type}} __Pyx_c_conj{{func_suffix}}({{type}});
|
||
|
#if {{is_float}}
|
||
|
static CYTHON_INLINE {{real_type}} __Pyx_c_abs{{func_suffix}}({{type}});
|
||
|
static CYTHON_INLINE {{type}} __Pyx_c_pow{{func_suffix}}({{type}}, {{type}});
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
/////////////// Arithmetic ///////////////
|
||
|
|
||
|
#if CYTHON_CCOMPLEX
|
||
|
#else
|
||
|
static CYTHON_INLINE int __Pyx_c_eq{{func_suffix}}({{type}} a, {{type}} b) {
|
||
|
return (a.real == b.real) && (a.imag == b.imag);
|
||
|
}
|
||
|
static CYTHON_INLINE {{type}} __Pyx_c_sum{{func_suffix}}({{type}} a, {{type}} b) {
|
||
|
{{type}} z;
|
||
|
z.real = a.real + b.real;
|
||
|
z.imag = a.imag + b.imag;
|
||
|
return z;
|
||
|
}
|
||
|
static CYTHON_INLINE {{type}} __Pyx_c_diff{{func_suffix}}({{type}} a, {{type}} b) {
|
||
|
{{type}} z;
|
||
|
z.real = a.real - b.real;
|
||
|
z.imag = a.imag - b.imag;
|
||
|
return z;
|
||
|
}
|
||
|
static CYTHON_INLINE {{type}} __Pyx_c_prod{{func_suffix}}({{type}} a, {{type}} b) {
|
||
|
{{type}} z;
|
||
|
z.real = a.real * b.real - a.imag * b.imag;
|
||
|
z.imag = a.real * b.imag + a.imag * b.real;
|
||
|
return z;
|
||
|
}
|
||
|
|
||
|
#if {{is_float}}
|
||
|
static CYTHON_INLINE {{type}} __Pyx_c_quot{{func_suffix}}({{type}} a, {{type}} b) {
|
||
|
if (b.imag == 0) {
|
||
|
return {{type_name}}_from_parts(a.real / b.real, a.imag / b.real);
|
||
|
} else if (fabs{{m}}(b.real) >= fabs{{m}}(b.imag)) {
|
||
|
if (b.real == 0 && b.imag == 0) {
|
||
|
return {{type_name}}_from_parts(a.real / b.real, a.imag / b.imag);
|
||
|
} else {
|
||
|
{{real_type}} r = b.imag / b.real;
|
||
|
{{real_type}} s = ({{real_type}})(1.0) / (b.real + b.imag * r);
|
||
|
return {{type_name}}_from_parts(
|
||
|
(a.real + a.imag * r) * s, (a.imag - a.real * r) * s);
|
||
|
}
|
||
|
} else {
|
||
|
{{real_type}} r = b.real / b.imag;
|
||
|
{{real_type}} s = ({{real_type}})(1.0) / (b.imag + b.real * r);
|
||
|
return {{type_name}}_from_parts(
|
||
|
(a.real * r + a.imag) * s, (a.imag * r - a.real) * s);
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
static CYTHON_INLINE {{type}} __Pyx_c_quot{{func_suffix}}({{type}} a, {{type}} b) {
|
||
|
if (b.imag == 0) {
|
||
|
return {{type_name}}_from_parts(a.real / b.real, a.imag / b.real);
|
||
|
} else {
|
||
|
{{real_type}} denom = b.real * b.real + b.imag * b.imag;
|
||
|
return {{type_name}}_from_parts(
|
||
|
(a.real * b.real + a.imag * b.imag) / denom,
|
||
|
(a.imag * b.real - a.real * b.imag) / denom);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static CYTHON_INLINE {{type}} __Pyx_c_neg{{func_suffix}}({{type}} a) {
|
||
|
{{type}} z;
|
||
|
z.real = -a.real;
|
||
|
z.imag = -a.imag;
|
||
|
return z;
|
||
|
}
|
||
|
static CYTHON_INLINE int __Pyx_c_is_zero{{func_suffix}}({{type}} a) {
|
||
|
return (a.real == 0) && (a.imag == 0);
|
||
|
}
|
||
|
static CYTHON_INLINE {{type}} __Pyx_c_conj{{func_suffix}}({{type}} a) {
|
||
|
{{type}} z;
|
||
|
z.real = a.real;
|
||
|
z.imag = -a.imag;
|
||
|
return z;
|
||
|
}
|
||
|
#if {{is_float}}
|
||
|
static CYTHON_INLINE {{real_type}} __Pyx_c_abs{{func_suffix}}({{type}} z) {
|
||
|
#if !defined(HAVE_HYPOT) || defined(_MSC_VER)
|
||
|
return sqrt{{m}}(z.real*z.real + z.imag*z.imag);
|
||
|
#else
|
||
|
return hypot{{m}}(z.real, z.imag);
|
||
|
#endif
|
||
|
}
|
||
|
static CYTHON_INLINE {{type}} __Pyx_c_pow{{func_suffix}}({{type}} a, {{type}} b) {
|
||
|
{{type}} z;
|
||
|
{{real_type}} r, lnr, theta, z_r, z_theta;
|
||
|
if (b.imag == 0 && b.real == (int)b.real) {
|
||
|
if (b.real < 0) {
|
||
|
{{real_type}} denom = a.real * a.real + a.imag * a.imag;
|
||
|
a.real = a.real / denom;
|
||
|
a.imag = -a.imag / denom;
|
||
|
b.real = -b.real;
|
||
|
}
|
||
|
switch ((int)b.real) {
|
||
|
case 0:
|
||
|
z.real = 1;
|
||
|
z.imag = 0;
|
||
|
return z;
|
||
|
case 1:
|
||
|
return a;
|
||
|
case 2:
|
||
|
return __Pyx_c_prod{{func_suffix}}(a, a);
|
||
|
case 3:
|
||
|
z = __Pyx_c_prod{{func_suffix}}(a, a);
|
||
|
return __Pyx_c_prod{{func_suffix}}(z, a);
|
||
|
case 4:
|
||
|
z = __Pyx_c_prod{{func_suffix}}(a, a);
|
||
|
return __Pyx_c_prod{{func_suffix}}(z, z);
|
||
|
}
|
||
|
}
|
||
|
if (a.imag == 0) {
|
||
|
if (a.real == 0) {
|
||
|
return a;
|
||
|
} else if ((b.imag == 0) && (a.real >= 0)) {
|
||
|
z.real = pow{{m}}(a.real, b.real);
|
||
|
z.imag = 0;
|
||
|
return z;
|
||
|
} else if (a.real > 0) {
|
||
|
r = a.real;
|
||
|
theta = 0;
|
||
|
} else {
|
||
|
r = -a.real;
|
||
|
theta = atan2{{m}}(0.0, -1.0);
|
||
|
}
|
||
|
} else {
|
||
|
r = __Pyx_c_abs{{func_suffix}}(a);
|
||
|
theta = atan2{{m}}(a.imag, a.real);
|
||
|
}
|
||
|
lnr = log{{m}}(r);
|
||
|
z_r = exp{{m}}(lnr * b.real - theta * b.imag);
|
||
|
z_theta = theta * b.real + lnr * b.imag;
|
||
|
z.real = z_r * cos{{m}}(z_theta);
|
||
|
z.imag = z_r * sin{{m}}(z_theta);
|
||
|
return z;
|
||
|
}
|
||
|
#endif
|
||
|
#endif
|