test-kivy-app/kivy_venv/lib/python3.11/site-packages/Cython/Compiler/Parsing.py

3853 lines
127 KiB
Python
Raw Normal View History

2024-09-15 12:12:16 +00:00
# cython: auto_cpdef=True, infer_types=True, language_level=3, py2_import=True
#
# Parser
#
from __future__ import absolute_import
# This should be done automatically
import cython
cython.declare(Nodes=object, ExprNodes=object, EncodedString=object,
bytes_literal=object, StringEncoding=object,
FileSourceDescriptor=object, lookup_unicodechar=object, unicode_category=object,
Future=object, Options=object, error=object, warning=object,
Builtin=object, ModuleNode=object, Utils=object, _unicode=object, _bytes=object,
re=object, sys=object, _parse_escape_sequences=object, _parse_escape_sequences_raw=object,
partial=object, reduce=object, _IS_PY3=cython.bint, _IS_2BYTE_UNICODE=cython.bint,
_CDEF_MODIFIERS=tuple)
from io import StringIO
import re
import sys
from unicodedata import lookup as lookup_unicodechar, category as unicode_category
from functools import partial, reduce
from .Scanning import PyrexScanner, FileSourceDescriptor, StringSourceDescriptor
from . import Nodes
from . import ExprNodes
from . import Builtin
from . import StringEncoding
from .StringEncoding import EncodedString, bytes_literal, _unicode, _bytes
from .ModuleNode import ModuleNode
from .Errors import error, warning
from .. import Utils
from . import Future
from . import Options
_IS_PY3 = sys.version_info[0] >= 3
_IS_2BYTE_UNICODE = sys.maxunicode == 0xffff
_CDEF_MODIFIERS = ('inline', 'nogil', 'api')
class Ctx(object):
# Parsing context
level = 'other'
visibility = 'private'
cdef_flag = 0
typedef_flag = 0
api = 0
overridable = 0
nogil = 0
namespace = None
templates = None
allow_struct_enum_decorator = False
def __init__(self, **kwds):
self.__dict__.update(kwds)
def __call__(self, **kwds):
ctx = Ctx()
d = ctx.__dict__
d.update(self.__dict__)
d.update(kwds)
return ctx
def p_ident(s, message="Expected an identifier"):
if s.sy == 'IDENT':
name = s.systring
s.next()
return name
else:
s.error(message)
def p_ident_list(s):
names = []
while s.sy == 'IDENT':
names.append(s.systring)
s.next()
if s.sy != ',':
break
s.next()
return names
#------------------------------------------
#
# Expressions
#
#------------------------------------------
def p_binop_operator(s):
pos = s.position()
op = s.sy
s.next()
return op, pos
def p_binop_expr(s, ops, p_sub_expr):
n1 = p_sub_expr(s)
while s.sy in ops:
op, pos = p_binop_operator(s)
n2 = p_sub_expr(s)
n1 = ExprNodes.binop_node(pos, op, n1, n2)
if op == '/':
if Future.division in s.context.future_directives:
n1.truedivision = True
else:
n1.truedivision = None # unknown
return n1
#lambdef: 'lambda' [varargslist] ':' test
def p_lambdef(s, allow_conditional=True):
# s.sy == 'lambda'
pos = s.position()
s.next()
if s.sy == ':':
args = []
star_arg = starstar_arg = None
else:
args, star_arg, starstar_arg = p_varargslist(
s, terminator=':', annotated=False)
s.expect(':')
if allow_conditional:
expr = p_test(s)
else:
expr = p_test_nocond(s)
return ExprNodes.LambdaNode(
pos, args = args,
star_arg = star_arg, starstar_arg = starstar_arg,
result_expr = expr)
#lambdef_nocond: 'lambda' [varargslist] ':' test_nocond
def p_lambdef_nocond(s):
return p_lambdef(s, allow_conditional=False)
#test: or_test ['if' or_test 'else' test] | lambdef
def p_test(s):
if s.sy == 'lambda':
return p_lambdef(s)
pos = s.position()
expr = p_or_test(s)
if s.sy == 'if':
s.next()
test = p_or_test(s)
s.expect('else')
other = p_test(s)
return ExprNodes.CondExprNode(pos, test=test, true_val=expr, false_val=other)
else:
return expr
#test_nocond: or_test | lambdef_nocond
def p_test_nocond(s):
if s.sy == 'lambda':
return p_lambdef_nocond(s)
else:
return p_or_test(s)
#or_test: and_test ('or' and_test)*
def p_or_test(s):
return p_rassoc_binop_expr(s, ('or',), p_and_test)
def p_rassoc_binop_expr(s, ops, p_subexpr):
n1 = p_subexpr(s)
if s.sy in ops:
pos = s.position()
op = s.sy
s.next()
n2 = p_rassoc_binop_expr(s, ops, p_subexpr)
n1 = ExprNodes.binop_node(pos, op, n1, n2)
return n1
#and_test: not_test ('and' not_test)*
def p_and_test(s):
#return p_binop_expr(s, ('and',), p_not_test)
return p_rassoc_binop_expr(s, ('and',), p_not_test)
#not_test: 'not' not_test | comparison
def p_not_test(s):
if s.sy == 'not':
pos = s.position()
s.next()
return ExprNodes.NotNode(pos, operand = p_not_test(s))
else:
return p_comparison(s)
#comparison: expr (comp_op expr)*
#comp_op: '<'|'>'|'=='|'>='|'<='|'<>'|'!='|'in'|'not' 'in'|'is'|'is' 'not'
def p_comparison(s):
n1 = p_starred_expr(s)
if s.sy in comparison_ops:
pos = s.position()
op = p_cmp_op(s)
n2 = p_starred_expr(s)
n1 = ExprNodes.PrimaryCmpNode(pos,
operator = op, operand1 = n1, operand2 = n2)
if s.sy in comparison_ops:
n1.cascade = p_cascaded_cmp(s)
return n1
def p_test_or_starred_expr(s):
if s.sy == '*':
return p_starred_expr(s)
else:
return p_test(s)
def p_starred_expr(s):
pos = s.position()
if s.sy == '*':
starred = True
s.next()
else:
starred = False
expr = p_bit_expr(s)
if starred:
expr = ExprNodes.StarredUnpackingNode(pos, expr)
return expr
def p_cascaded_cmp(s):
pos = s.position()
op = p_cmp_op(s)
n2 = p_starred_expr(s)
result = ExprNodes.CascadedCmpNode(pos,
operator = op, operand2 = n2)
if s.sy in comparison_ops:
result.cascade = p_cascaded_cmp(s)
return result
def p_cmp_op(s):
if s.sy == 'not':
s.next()
s.expect('in')
op = 'not_in'
elif s.sy == 'is':
s.next()
if s.sy == 'not':
s.next()
op = 'is_not'
else:
op = 'is'
else:
op = s.sy
s.next()
if op == '<>':
op = '!='
return op
comparison_ops = cython.declare(set, set([
'<', '>', '==', '>=', '<=', '<>', '!=',
'in', 'is', 'not'
]))
#expr: xor_expr ('|' xor_expr)*
def p_bit_expr(s):
return p_binop_expr(s, ('|',), p_xor_expr)
#xor_expr: and_expr ('^' and_expr)*
def p_xor_expr(s):
return p_binop_expr(s, ('^',), p_and_expr)
#and_expr: shift_expr ('&' shift_expr)*
def p_and_expr(s):
return p_binop_expr(s, ('&',), p_shift_expr)
#shift_expr: arith_expr (('<<'|'>>') arith_expr)*
def p_shift_expr(s):
return p_binop_expr(s, ('<<', '>>'), p_arith_expr)
#arith_expr: term (('+'|'-') term)*
def p_arith_expr(s):
return p_binop_expr(s, ('+', '-'), p_term)
#term: factor (('*'|'@'|'/'|'%'|'//') factor)*
def p_term(s):
return p_binop_expr(s, ('*', '@', '/', '%', '//'), p_factor)
#factor: ('+'|'-'|'~'|'&'|typecast|sizeof) factor | power
def p_factor(s):
# little indirection for C-ification purposes
return _p_factor(s)
def _p_factor(s):
sy = s.sy
if sy in ('+', '-', '~'):
op = s.sy
pos = s.position()
s.next()
return ExprNodes.unop_node(pos, op, p_factor(s))
elif not s.in_python_file:
if sy == '&':
pos = s.position()
s.next()
arg = p_factor(s)
return ExprNodes.AmpersandNode(pos, operand = arg)
elif sy == "<":
return p_typecast(s)
elif sy == 'IDENT' and s.systring == "sizeof":
return p_sizeof(s)
return p_power(s)
def p_typecast(s):
# s.sy == "<"
pos = s.position()
s.next()
base_type = p_c_base_type(s)
is_memslice = isinstance(base_type, Nodes.MemoryViewSliceTypeNode)
is_template = isinstance(base_type, Nodes.TemplatedTypeNode)
is_const = isinstance(base_type, Nodes.CConstTypeNode)
if (not is_memslice and not is_template and not is_const
and base_type.name is None):
s.error("Unknown type")
declarator = p_c_declarator(s, empty = 1)
if s.sy == '?':
s.next()
typecheck = 1
else:
typecheck = 0
s.expect(">")
operand = p_factor(s)
if is_memslice:
return ExprNodes.CythonArrayNode(pos, base_type_node=base_type,
operand=operand)
return ExprNodes.TypecastNode(pos,
base_type = base_type,
declarator = declarator,
operand = operand,
typecheck = typecheck)
def p_sizeof(s):
# s.sy == ident "sizeof"
pos = s.position()
s.next()
s.expect('(')
# Here we decide if we are looking at an expression or type
# If it is actually a type, but parsable as an expression,
# we treat it as an expression here.
if looking_at_expr(s):
operand = p_test(s)
node = ExprNodes.SizeofVarNode(pos, operand = operand)
else:
base_type = p_c_base_type(s)
declarator = p_c_declarator(s, empty = 1)
node = ExprNodes.SizeofTypeNode(pos,
base_type = base_type, declarator = declarator)
s.expect(')')
return node
def p_yield_expression(s):
# s.sy == "yield"
pos = s.position()
s.next()
is_yield_from = False
if s.sy == 'from':
is_yield_from = True
s.next()
if s.sy != ')' and s.sy not in statement_terminators:
# "yield from" does not support implicit tuples, but "yield" does ("yield 1,2")
arg = p_test(s) if is_yield_from else p_testlist(s)
else:
if is_yield_from:
s.error("'yield from' requires a source argument",
pos=pos, fatal=False)
arg = None
if is_yield_from:
return ExprNodes.YieldFromExprNode(pos, arg=arg)
else:
return ExprNodes.YieldExprNode(pos, arg=arg)
def p_yield_statement(s):
# s.sy == "yield"
yield_expr = p_yield_expression(s)
return Nodes.ExprStatNode(yield_expr.pos, expr=yield_expr)
def p_async_statement(s, ctx, decorators):
# s.sy >> 'async' ...
if s.sy == 'def':
# 'async def' statements aren't allowed in pxd files
if 'pxd' in ctx.level:
s.error('def statement not allowed here')
s.level = ctx.level
return p_def_statement(s, decorators, is_async_def=True)
elif decorators:
s.error("Decorators can only be followed by functions or classes")
elif s.sy == 'for':
return p_for_statement(s, is_async=True)
elif s.sy == 'with':
s.next()
return p_with_items(s, is_async=True)
else:
s.error("expected one of 'def', 'for', 'with' after 'async'")
#power: atom_expr ('**' factor)*
#atom_expr: ['await'] atom trailer*
def p_power(s):
if s.systring == 'new' and s.peek()[0] == 'IDENT':
return p_new_expr(s)
await_pos = None
if s.sy == 'await':
await_pos = s.position()
s.next()
n1 = p_atom(s)
while s.sy in ('(', '[', '.'):
n1 = p_trailer(s, n1)
if await_pos:
n1 = ExprNodes.AwaitExprNode(await_pos, arg=n1)
if s.sy == '**':
pos = s.position()
s.next()
n2 = p_factor(s)
n1 = ExprNodes.binop_node(pos, '**', n1, n2)
return n1
def p_new_expr(s):
# s.systring == 'new'.
pos = s.position()
s.next()
cppclass = p_c_base_type(s)
return p_call(s, ExprNodes.NewExprNode(pos, cppclass = cppclass))
#trailer: '(' [arglist] ')' | '[' subscriptlist ']' | '.' NAME
def p_trailer(s, node1):
pos = s.position()
if s.sy == '(':
return p_call(s, node1)
elif s.sy == '[':
return p_index(s, node1)
else: # s.sy == '.'
s.next()
name = p_ident(s)
return ExprNodes.AttributeNode(pos,
obj=node1, attribute=name)
# arglist: argument (',' argument)* [',']
# argument: [test '='] test # Really [keyword '='] test
# since PEP 448:
# argument: ( test [comp_for] |
# test '=' test |
# '**' expr |
# star_expr )
def p_call_parse_args(s, allow_genexp=True):
# s.sy == '('
pos = s.position()
s.next()
positional_args = []
keyword_args = []
starstar_seen = False
last_was_tuple_unpack = False
while s.sy != ')':
if s.sy == '*':
if starstar_seen:
s.error("Non-keyword arg following keyword arg", pos=s.position())
s.next()
positional_args.append(p_test(s))
last_was_tuple_unpack = True
elif s.sy == '**':
s.next()
keyword_args.append(p_test(s))
starstar_seen = True
else:
arg = p_test(s)
if s.sy == '=':
s.next()
if not arg.is_name:
s.error("Expected an identifier before '='",
pos=arg.pos)
encoded_name = s.context.intern_ustring(arg.name)
keyword = ExprNodes.IdentifierStringNode(
arg.pos, value=encoded_name)
arg = p_test(s)
keyword_args.append((keyword, arg))
else:
if keyword_args:
s.error("Non-keyword arg following keyword arg", pos=arg.pos)
if positional_args and not last_was_tuple_unpack:
positional_args[-1].append(arg)
else:
positional_args.append([arg])
last_was_tuple_unpack = False
if s.sy != ',':
break
s.next()
if s.sy in ('for', 'async'):
if not keyword_args and not last_was_tuple_unpack:
if len(positional_args) == 1 and len(positional_args[0]) == 1:
positional_args = [[p_genexp(s, positional_args[0][0])]]
s.expect(')')
return positional_args or [[]], keyword_args
def p_call_build_packed_args(pos, positional_args, keyword_args):
keyword_dict = None
subtuples = [
ExprNodes.TupleNode(pos, args=arg) if isinstance(arg, list) else ExprNodes.AsTupleNode(pos, arg=arg)
for arg in positional_args
]
# TODO: implement a faster way to join tuples than creating each one and adding them
arg_tuple = reduce(partial(ExprNodes.binop_node, pos, '+'), subtuples)
if keyword_args:
kwargs = []
dict_items = []
for item in keyword_args:
if isinstance(item, tuple):
key, value = item
dict_items.append(ExprNodes.DictItemNode(pos=key.pos, key=key, value=value))
elif item.is_dict_literal:
# unpack "**{a:b}" directly
dict_items.extend(item.key_value_pairs)
else:
if dict_items:
kwargs.append(ExprNodes.DictNode(
dict_items[0].pos, key_value_pairs=dict_items, reject_duplicates=True))
dict_items = []
kwargs.append(item)
if dict_items:
kwargs.append(ExprNodes.DictNode(
dict_items[0].pos, key_value_pairs=dict_items, reject_duplicates=True))
if kwargs:
if len(kwargs) == 1 and kwargs[0].is_dict_literal:
# only simple keyword arguments found -> one dict
keyword_dict = kwargs[0]
else:
# at least one **kwargs
keyword_dict = ExprNodes.MergedDictNode(pos, keyword_args=kwargs)
return arg_tuple, keyword_dict
def p_call(s, function):
# s.sy == '('
pos = s.position()
positional_args, keyword_args = p_call_parse_args(s)
if not keyword_args and len(positional_args) == 1 and isinstance(positional_args[0], list):
return ExprNodes.SimpleCallNode(pos, function=function, args=positional_args[0])
else:
arg_tuple, keyword_dict = p_call_build_packed_args(pos, positional_args, keyword_args)
return ExprNodes.GeneralCallNode(
pos, function=function, positional_args=arg_tuple, keyword_args=keyword_dict)
#lambdef: 'lambda' [varargslist] ':' test
#subscriptlist: subscript (',' subscript)* [',']
def p_index(s, base):
# s.sy == '['
pos = s.position()
s.next()
subscripts, is_single_value = p_subscript_list(s)
if is_single_value and len(subscripts[0]) == 2:
start, stop = subscripts[0]
result = ExprNodes.SliceIndexNode(pos,
base = base, start = start, stop = stop)
else:
indexes = make_slice_nodes(pos, subscripts)
if is_single_value:
index = indexes[0]
else:
index = ExprNodes.TupleNode(pos, args = indexes)
result = ExprNodes.IndexNode(pos,
base = base, index = index)
s.expect(']')
return result
def p_subscript_list(s):
is_single_value = True
items = [p_subscript(s)]
while s.sy == ',':
is_single_value = False
s.next()
if s.sy == ']':
break
items.append(p_subscript(s))
return items, is_single_value
#subscript: '.' '.' '.' | test | [test] ':' [test] [':' [test]]
def p_subscript(s):
# Parse a subscript and return a list of
# 1, 2 or 3 ExprNodes, depending on how
# many slice elements were encountered.
pos = s.position()
start = p_slice_element(s, (':',))
if s.sy != ':':
return [start]
s.next()
stop = p_slice_element(s, (':', ',', ']'))
if s.sy != ':':
return [start, stop]
s.next()
step = p_slice_element(s, (':', ',', ']'))
return [start, stop, step]
def p_slice_element(s, follow_set):
# Simple expression which may be missing iff
# it is followed by something in follow_set.
if s.sy not in follow_set:
return p_test(s)
else:
return None
def expect_ellipsis(s):
s.expect('.')
s.expect('.')
s.expect('.')
def make_slice_nodes(pos, subscripts):
# Convert a list of subscripts as returned
# by p_subscript_list into a list of ExprNodes,
# creating SliceNodes for elements with 2 or
# more components.
result = []
for subscript in subscripts:
if len(subscript) == 1:
result.append(subscript[0])
else:
result.append(make_slice_node(pos, *subscript))
return result
def make_slice_node(pos, start, stop = None, step = None):
if not start:
start = ExprNodes.NoneNode(pos)
if not stop:
stop = ExprNodes.NoneNode(pos)
if not step:
step = ExprNodes.NoneNode(pos)
return ExprNodes.SliceNode(pos,
start = start, stop = stop, step = step)
#atom: '(' [yield_expr|testlist_comp] ')' | '[' [listmaker] ']' | '{' [dict_or_set_maker] '}' | '`' testlist '`' | NAME | NUMBER | STRING+
def p_atom(s):
pos = s.position()
sy = s.sy
if sy == '(':
s.next()
if s.sy == ')':
result = ExprNodes.TupleNode(pos, args = [])
elif s.sy == 'yield':
result = p_yield_expression(s)
else:
result = p_testlist_comp(s)
s.expect(')')
return result
elif sy == '[':
return p_list_maker(s)
elif sy == '{':
return p_dict_or_set_maker(s)
elif sy == '`':
return p_backquote_expr(s)
elif sy == '.':
expect_ellipsis(s)
return ExprNodes.EllipsisNode(pos)
elif sy == 'INT':
return p_int_literal(s)
elif sy == 'FLOAT':
value = s.systring
s.next()
return ExprNodes.FloatNode(pos, value = value)
elif sy == 'IMAG':
value = s.systring[:-1]
s.next()
return ExprNodes.ImagNode(pos, value = value)
elif sy == 'BEGIN_STRING':
kind, bytes_value, unicode_value = p_cat_string_literal(s)
if kind == 'c':
return ExprNodes.CharNode(pos, value = bytes_value)
elif kind == 'u':
return ExprNodes.UnicodeNode(pos, value = unicode_value, bytes_value = bytes_value)
elif kind == 'b':
return ExprNodes.BytesNode(pos, value = bytes_value)
elif kind == 'f':
return ExprNodes.JoinedStrNode(pos, values = unicode_value)
elif kind == '':
return ExprNodes.StringNode(pos, value = bytes_value, unicode_value = unicode_value)
else:
s.error("invalid string kind '%s'" % kind)
elif sy == 'IDENT':
name = s.systring
if name == "None":
result = ExprNodes.NoneNode(pos)
elif name == "True":
result = ExprNodes.BoolNode(pos, value=True)
elif name == "False":
result = ExprNodes.BoolNode(pos, value=False)
elif name == "NULL" and not s.in_python_file:
result = ExprNodes.NullNode(pos)
else:
result = p_name(s, name)
s.next()
return result
else:
s.error("Expected an identifier or literal")
def p_int_literal(s):
pos = s.position()
value = s.systring
s.next()
unsigned = ""
longness = ""
while value[-1] in u"UuLl":
if value[-1] in u"Ll":
longness += "L"
else:
unsigned += "U"
value = value[:-1]
# '3L' is ambiguous in Py2 but not in Py3. '3U' and '3LL' are
# illegal in Py2 Python files. All suffixes are illegal in Py3
# Python files.
is_c_literal = None
if unsigned:
is_c_literal = True
elif longness:
if longness == 'LL' or s.context.language_level >= 3:
is_c_literal = True
if s.in_python_file:
if is_c_literal:
error(pos, "illegal integer literal syntax in Python source file")
is_c_literal = False
return ExprNodes.IntNode(pos,
is_c_literal = is_c_literal,
value = value,
unsigned = unsigned,
longness = longness)
def p_name(s, name):
pos = s.position()
if not s.compile_time_expr and name in s.compile_time_env:
value = s.compile_time_env.lookup_here(name)
node = wrap_compile_time_constant(pos, value)
if node is not None:
return node
return ExprNodes.NameNode(pos, name=name)
def wrap_compile_time_constant(pos, value):
rep = repr(value)
if value is None:
return ExprNodes.NoneNode(pos)
elif value is Ellipsis:
return ExprNodes.EllipsisNode(pos)
elif isinstance(value, bool):
return ExprNodes.BoolNode(pos, value=value)
elif isinstance(value, int):
return ExprNodes.IntNode(pos, value=rep, constant_result=value)
elif isinstance(value, float):
return ExprNodes.FloatNode(pos, value=rep, constant_result=value)
elif isinstance(value, complex):
node = ExprNodes.ImagNode(pos, value=repr(value.imag), constant_result=complex(0.0, value.imag))
if value.real:
# FIXME: should we care about -0.0 ?
# probably not worth using the '-' operator for negative imag values
node = ExprNodes.binop_node(
pos, '+', ExprNodes.FloatNode(pos, value=repr(value.real), constant_result=value.real), node,
constant_result=value)
return node
elif isinstance(value, _unicode):
return ExprNodes.UnicodeNode(pos, value=EncodedString(value))
elif isinstance(value, _bytes):
bvalue = bytes_literal(value, 'ascii') # actually: unknown encoding, but BytesLiteral requires one
return ExprNodes.BytesNode(pos, value=bvalue, constant_result=value)
elif isinstance(value, tuple):
args = [wrap_compile_time_constant(pos, arg)
for arg in value]
if None not in args:
return ExprNodes.TupleNode(pos, args=args)
else:
# error already reported
return None
elif not _IS_PY3 and isinstance(value, long):
return ExprNodes.IntNode(pos, value=rep.rstrip('L'), constant_result=value)
error(pos, "Invalid type for compile-time constant: %r (type %s)"
% (value, value.__class__.__name__))
return None
def p_cat_string_literal(s):
# A sequence of one or more adjacent string literals.
# Returns (kind, bytes_value, unicode_value)
# where kind in ('b', 'c', 'u', 'f', '')
pos = s.position()
kind, bytes_value, unicode_value = p_string_literal(s)
if kind == 'c' or s.sy != 'BEGIN_STRING':
return kind, bytes_value, unicode_value
bstrings, ustrings, positions = [bytes_value], [unicode_value], [pos]
bytes_value = unicode_value = None
while s.sy == 'BEGIN_STRING':
pos = s.position()
next_kind, next_bytes_value, next_unicode_value = p_string_literal(s)
if next_kind == 'c':
error(pos, "Cannot concatenate char literal with another string or char literal")
continue
elif next_kind != kind:
# concatenating f strings and normal strings is allowed and leads to an f string
if set([kind, next_kind]) in (set(['f', 'u']), set(['f', ''])):
kind = 'f'
else:
error(pos, "Cannot mix string literals of different types, expected %s'', got %s''" % (
kind, next_kind))
continue
bstrings.append(next_bytes_value)
ustrings.append(next_unicode_value)
positions.append(pos)
# join and rewrap the partial literals
if kind in ('b', 'c', '') or kind == 'u' and None not in bstrings:
# Py3 enforced unicode literals are parsed as bytes/unicode combination
bytes_value = bytes_literal(StringEncoding.join_bytes(bstrings), s.source_encoding)
if kind in ('u', ''):
unicode_value = EncodedString(u''.join([u for u in ustrings if u is not None]))
if kind == 'f':
unicode_value = []
for u, pos in zip(ustrings, positions):
if isinstance(u, list):
unicode_value += u
else:
# non-f-string concatenated into the f-string
unicode_value.append(ExprNodes.UnicodeNode(pos, value=EncodedString(u)))
return kind, bytes_value, unicode_value
def p_opt_string_literal(s, required_type='u'):
if s.sy != 'BEGIN_STRING':
return None
pos = s.position()
kind, bytes_value, unicode_value = p_string_literal(s, required_type)
if required_type == 'u':
if kind == 'f':
s.error("f-string not allowed here", pos)
return unicode_value
elif required_type == 'b':
return bytes_value
else:
s.error("internal parser configuration error")
def check_for_non_ascii_characters(string):
for c in string:
if c >= u'\x80':
return True
return False
def p_string_literal(s, kind_override=None):
# A single string or char literal. Returns (kind, bvalue, uvalue)
# where kind in ('b', 'c', 'u', 'f', ''). The 'bvalue' is the source
# code byte sequence of the string literal, 'uvalue' is the
# decoded Unicode string. Either of the two may be None depending
# on the 'kind' of string, only unprefixed strings have both
# representations. In f-strings, the uvalue is a list of the Unicode
# strings and f-string expressions that make up the f-string.
# s.sy == 'BEGIN_STRING'
pos = s.position()
is_python3_source = s.context.language_level >= 3
has_non_ascii_literal_characters = False
string_start_pos = (pos[0], pos[1], pos[2] + len(s.systring))
kind_string = s.systring.rstrip('"\'').lower()
if len(kind_string) > 1:
if len(set(kind_string)) != len(kind_string):
error(pos, 'Duplicate string prefix character')
if 'b' in kind_string and 'u' in kind_string:
error(pos, 'String prefixes b and u cannot be combined')
if 'b' in kind_string and 'f' in kind_string:
error(pos, 'String prefixes b and f cannot be combined')
if 'u' in kind_string and 'f' in kind_string:
error(pos, 'String prefixes u and f cannot be combined')
is_raw = 'r' in kind_string
if 'c' in kind_string:
# this should never happen, since the lexer does not allow combining c
# with other prefix characters
if len(kind_string) != 1:
error(pos, 'Invalid string prefix for character literal')
kind = 'c'
elif 'f' in kind_string:
kind = 'f' # u is ignored
is_raw = True # postpone the escape resolution
elif 'b' in kind_string:
kind = 'b'
elif 'u' in kind_string:
kind = 'u'
else:
kind = ''
if kind == '' and kind_override is None and Future.unicode_literals in s.context.future_directives:
chars = StringEncoding.StrLiteralBuilder(s.source_encoding)
kind = 'u'
else:
if kind_override is not None and kind_override in 'ub':
kind = kind_override
if kind in ('u', 'f'): # f-strings are scanned exactly like Unicode literals, but are parsed further later
chars = StringEncoding.UnicodeLiteralBuilder()
elif kind == '':
chars = StringEncoding.StrLiteralBuilder(s.source_encoding)
else:
chars = StringEncoding.BytesLiteralBuilder(s.source_encoding)
while 1:
s.next()
sy = s.sy
systr = s.systring
# print "p_string_literal: sy =", sy, repr(s.systring) ###
if sy == 'CHARS':
chars.append(systr)
if is_python3_source and not has_non_ascii_literal_characters and check_for_non_ascii_characters(systr):
has_non_ascii_literal_characters = True
elif sy == 'ESCAPE':
# in Py2, 'ur' raw unicode strings resolve unicode escapes but nothing else
if is_raw and (is_python3_source or kind != 'u' or systr[1] not in u'Uu'):
chars.append(systr)
if is_python3_source and not has_non_ascii_literal_characters and check_for_non_ascii_characters(systr):
has_non_ascii_literal_characters = True
else:
_append_escape_sequence(kind, chars, systr, s)
elif sy == 'NEWLINE':
chars.append(u'\n')
elif sy == 'END_STRING':
break
elif sy == 'EOF':
s.error("Unclosed string literal", pos=pos)
else:
s.error("Unexpected token %r:%r in string literal" % (
sy, s.systring))
if kind == 'c':
unicode_value = None
bytes_value = chars.getchar()
if len(bytes_value) != 1:
error(pos, u"invalid character literal: %r" % bytes_value)
else:
bytes_value, unicode_value = chars.getstrings()
if (has_non_ascii_literal_characters
and is_python3_source and Future.unicode_literals in s.context.future_directives):
# Python 3 forbids literal non-ASCII characters in byte strings
if kind == 'b':
s.error("bytes can only contain ASCII literal characters.", pos=pos)
bytes_value = None
if kind == 'f':
unicode_value = p_f_string(s, unicode_value, string_start_pos, is_raw='r' in kind_string)
s.next()
return (kind, bytes_value, unicode_value)
def _append_escape_sequence(kind, builder, escape_sequence, s):
c = escape_sequence[1]
if c in u"01234567":
builder.append_charval(int(escape_sequence[1:], 8))
elif c in u"'\"\\":
builder.append(c)
elif c in u"abfnrtv":
builder.append(StringEncoding.char_from_escape_sequence(escape_sequence))
elif c == u'\n':
pass # line continuation
elif c == u'x': # \xXX
if len(escape_sequence) == 4:
builder.append_charval(int(escape_sequence[2:], 16))
else:
s.error("Invalid hex escape '%s'" % escape_sequence, fatal=False)
elif c in u'NUu' and kind in ('u', 'f', ''): # \uxxxx, \Uxxxxxxxx, \N{...}
chrval = -1
if c == u'N':
uchar = None
try:
uchar = lookup_unicodechar(escape_sequence[3:-1])
chrval = ord(uchar)
except KeyError:
s.error("Unknown Unicode character name %s" %
repr(escape_sequence[3:-1]).lstrip('u'), fatal=False)
except TypeError:
# 2-byte unicode build of CPython?
if (uchar is not None and _IS_2BYTE_UNICODE and len(uchar) == 2 and
unicode_category(uchar[0]) == 'Cs' and unicode_category(uchar[1]) == 'Cs'):
# surrogate pair instead of single character
chrval = 0x10000 + (ord(uchar[0]) - 0xd800) >> 10 + (ord(uchar[1]) - 0xdc00)
else:
raise
elif len(escape_sequence) in (6, 10):
chrval = int(escape_sequence[2:], 16)
if chrval > 1114111: # sys.maxunicode:
s.error("Invalid unicode escape '%s'" % escape_sequence)
chrval = -1
else:
s.error("Invalid unicode escape '%s'" % escape_sequence, fatal=False)
if chrval >= 0:
builder.append_uescape(chrval, escape_sequence)
else:
builder.append(escape_sequence)
_parse_escape_sequences_raw, _parse_escape_sequences = [re.compile((
# escape sequences:
br'(\\(?:' +
(br'\\?' if is_raw else (
br'[\\abfnrtv"\'{]|'
br'[0-7]{2,3}|'
br'N\{[^}]*\}|'
br'x[0-9a-fA-F]{2}|'
br'u[0-9a-fA-F]{4}|'
br'U[0-9a-fA-F]{8}|'
br'[NxuU]|' # detect invalid escape sequences that do not match above
)) +
br')?|'
# non-escape sequences:
br'\{\{?|'
br'\}\}?|'
br'[^\\{}]+)'
).decode('us-ascii')).match
for is_raw in (True, False)]
def _f_string_error_pos(pos, string, i):
return (pos[0], pos[1], pos[2] + i + 1) # FIXME: handle newlines in string
def p_f_string(s, unicode_value, pos, is_raw):
# Parses a PEP 498 f-string literal into a list of nodes. Nodes are either UnicodeNodes
# or FormattedValueNodes.
values = []
next_start = 0
size = len(unicode_value)
builder = StringEncoding.UnicodeLiteralBuilder()
_parse_seq = _parse_escape_sequences_raw if is_raw else _parse_escape_sequences
while next_start < size:
end = next_start
match = _parse_seq(unicode_value, next_start)
if match is None:
error(_f_string_error_pos(pos, unicode_value, next_start), "Invalid escape sequence")
next_start = match.end()
part = match.group()
c = part[0]
if c == '\\':
if not is_raw and len(part) > 1:
_append_escape_sequence('f', builder, part, s)
else:
builder.append(part)
elif c == '{':
if part == '{{':
builder.append('{')
else:
# start of an expression
if builder.chars:
values.append(ExprNodes.UnicodeNode(pos, value=builder.getstring()))
builder = StringEncoding.UnicodeLiteralBuilder()
next_start, expr_node = p_f_string_expr(s, unicode_value, pos, next_start, is_raw)
values.append(expr_node)
elif c == '}':
if part == '}}':
builder.append('}')
else:
error(_f_string_error_pos(pos, unicode_value, end),
"f-string: single '}' is not allowed")
else:
builder.append(part)
if builder.chars:
values.append(ExprNodes.UnicodeNode(pos, value=builder.getstring()))
return values
def p_f_string_expr(s, unicode_value, pos, starting_index, is_raw):
# Parses a {}-delimited expression inside an f-string. Returns a FormattedValueNode
# and the index in the string that follows the expression.
i = starting_index
size = len(unicode_value)
conversion_char = terminal_char = format_spec = None
format_spec_str = None
NO_CHAR = 2**30
nested_depth = 0
quote_char = NO_CHAR
in_triple_quotes = False
backslash_reported = False
while True:
if i >= size:
break # error will be reported below
c = unicode_value[i]
if quote_char != NO_CHAR:
if c == '\\':
# avoid redundant error reports along '\' sequences
if not backslash_reported:
error(_f_string_error_pos(pos, unicode_value, i),
"backslashes not allowed in f-strings")
backslash_reported = True
elif c == quote_char:
if in_triple_quotes:
if i + 2 < size and unicode_value[i + 1] == c and unicode_value[i + 2] == c:
in_triple_quotes = False
quote_char = NO_CHAR
i += 2
else:
quote_char = NO_CHAR
elif c in '\'"':
quote_char = c
if i + 2 < size and unicode_value[i + 1] == c and unicode_value[i + 2] == c:
in_triple_quotes = True
i += 2
elif c in '{[(':
nested_depth += 1
elif nested_depth != 0 and c in '}])':
nested_depth -= 1
elif c == '#':
error(_f_string_error_pos(pos, unicode_value, i),
"format string cannot include #")
elif nested_depth == 0 and c in '!:}':
# allow != as a special case
if c == '!' and i + 1 < size and unicode_value[i + 1] == '=':
i += 1
continue
terminal_char = c
break
i += 1
# normalise line endings as the parser expects that
expr_str = unicode_value[starting_index:i].replace('\r\n', '\n').replace('\r', '\n')
expr_pos = (pos[0], pos[1], pos[2] + starting_index + 2) # TODO: find exact code position (concat, multi-line, ...)
if not expr_str.strip():
error(_f_string_error_pos(pos, unicode_value, starting_index),
"empty expression not allowed in f-string")
if terminal_char == '!':
i += 1
if i + 2 > size:
pass # error will be reported below
else:
conversion_char = unicode_value[i]
i += 1
terminal_char = unicode_value[i]
if terminal_char == ':':
in_triple_quotes = False
in_string = False
nested_depth = 0
start_format_spec = i + 1
while True:
if i >= size:
break # error will be reported below
c = unicode_value[i]
if not in_triple_quotes and not in_string:
if c == '{':
nested_depth += 1
elif c == '}':
if nested_depth > 0:
nested_depth -= 1
else:
terminal_char = c
break
if c in '\'"':
if not in_string and i + 2 < size and unicode_value[i + 1] == c and unicode_value[i + 2] == c:
in_triple_quotes = not in_triple_quotes
i += 2
elif not in_triple_quotes:
in_string = not in_string
i += 1
format_spec_str = unicode_value[start_format_spec:i]
if terminal_char != '}':
error(_f_string_error_pos(pos, unicode_value, i),
"missing '}' in format string expression" + (
", found '%s'" % terminal_char if terminal_char else ""))
# parse the expression as if it was surrounded by parentheses
buf = StringIO('(%s)' % expr_str)
scanner = PyrexScanner(buf, expr_pos[0], parent_scanner=s, source_encoding=s.source_encoding, initial_pos=expr_pos)
expr = p_testlist(scanner) # TODO is testlist right here?
# validate the conversion char
if conversion_char is not None and not ExprNodes.FormattedValueNode.find_conversion_func(conversion_char):
error(expr_pos, "invalid conversion character '%s'" % conversion_char)
# the format spec is itself treated like an f-string
if format_spec_str:
format_spec = ExprNodes.JoinedStrNode(pos, values=p_f_string(s, format_spec_str, pos, is_raw))
return i + 1, ExprNodes.FormattedValueNode(
pos, value=expr, conversion_char=conversion_char, format_spec=format_spec)
# since PEP 448:
# list_display ::= "[" [listmaker] "]"
# listmaker ::= (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] )
# comp_iter ::= comp_for | comp_if
# comp_for ::= ["async"] "for" expression_list "in" testlist [comp_iter]
# comp_if ::= "if" test [comp_iter]
def p_list_maker(s):
# s.sy == '['
pos = s.position()
s.next()
if s.sy == ']':
s.expect(']')
return ExprNodes.ListNode(pos, args=[])
expr = p_test_or_starred_expr(s)
if s.sy in ('for', 'async'):
if expr.is_starred:
s.error("iterable unpacking cannot be used in comprehension")
append = ExprNodes.ComprehensionAppendNode(pos, expr=expr)
loop = p_comp_for(s, append)
s.expect(']')
return ExprNodes.ComprehensionNode(
pos, loop=loop, append=append, type=Builtin.list_type,
# list comprehensions leak their loop variable in Py2
has_local_scope=s.context.language_level >= 3)
# (merged) list literal
if s.sy == ',':
s.next()
exprs = p_test_or_starred_expr_list(s, expr)
else:
exprs = [expr]
s.expect(']')
return ExprNodes.ListNode(pos, args=exprs)
def p_comp_iter(s, body):
if s.sy in ('for', 'async'):
return p_comp_for(s, body)
elif s.sy == 'if':
return p_comp_if(s, body)
else:
# insert the 'append' operation into the loop
return body
def p_comp_for(s, body):
pos = s.position()
# [async] for ...
is_async = False
if s.sy == 'async':
is_async = True
s.next()
# s.sy == 'for'
s.expect('for')
kw = p_for_bounds(s, allow_testlist=False, is_async=is_async)
kw.update(else_clause=None, body=p_comp_iter(s, body), is_async=is_async)
return Nodes.ForStatNode(pos, **kw)
def p_comp_if(s, body):
# s.sy == 'if'
pos = s.position()
s.next()
test = p_test_nocond(s)
return Nodes.IfStatNode(pos,
if_clauses = [Nodes.IfClauseNode(pos, condition = test,
body = p_comp_iter(s, body))],
else_clause = None )
# since PEP 448:
#dictorsetmaker: ( ((test ':' test | '**' expr)
# (comp_for | (',' (test ':' test | '**' expr))* [','])) |
# ((test | star_expr)
# (comp_for | (',' (test | star_expr))* [','])) )
def p_dict_or_set_maker(s):
# s.sy == '{'
pos = s.position()
s.next()
if s.sy == '}':
s.next()
return ExprNodes.DictNode(pos, key_value_pairs=[])
parts = []
target_type = 0
last_was_simple_item = False
while True:
if s.sy in ('*', '**'):
# merged set/dict literal
if target_type == 0:
target_type = 1 if s.sy == '*' else 2 # 'stars'
elif target_type != len(s.sy):
s.error("unexpected %sitem found in %s literal" % (
s.sy, 'set' if target_type == 1 else 'dict'))
s.next()
if s.sy == '*':
s.error("expected expression, found '*'")
item = p_starred_expr(s)
parts.append(item)
last_was_simple_item = False
else:
item = p_test(s)
if target_type == 0:
target_type = 2 if s.sy == ':' else 1 # dict vs. set
if target_type == 2:
# dict literal
s.expect(':')
key = item
value = p_test(s)
item = ExprNodes.DictItemNode(key.pos, key=key, value=value)
if last_was_simple_item:
parts[-1].append(item)
else:
parts.append([item])
last_was_simple_item = True
if s.sy == ',':
s.next()
if s.sy == '}':
break
else:
break
if s.sy in ('for', 'async'):
# dict/set comprehension
if len(parts) == 1 and isinstance(parts[0], list) and len(parts[0]) == 1:
item = parts[0][0]
if target_type == 2:
assert isinstance(item, ExprNodes.DictItemNode), type(item)
comprehension_type = Builtin.dict_type
append = ExprNodes.DictComprehensionAppendNode(
item.pos, key_expr=item.key, value_expr=item.value)
else:
comprehension_type = Builtin.set_type
append = ExprNodes.ComprehensionAppendNode(item.pos, expr=item)
loop = p_comp_for(s, append)
s.expect('}')
return ExprNodes.ComprehensionNode(pos, loop=loop, append=append, type=comprehension_type)
else:
# syntax error, try to find a good error message
if len(parts) == 1 and not isinstance(parts[0], list):
s.error("iterable unpacking cannot be used in comprehension")
else:
# e.g. "{1,2,3 for ..."
s.expect('}')
return ExprNodes.DictNode(pos, key_value_pairs=[])
s.expect('}')
if target_type == 1:
# (merged) set literal
items = []
set_items = []
for part in parts:
if isinstance(part, list):
set_items.extend(part)
else:
if set_items:
items.append(ExprNodes.SetNode(set_items[0].pos, args=set_items))
set_items = []
items.append(part)
if set_items:
items.append(ExprNodes.SetNode(set_items[0].pos, args=set_items))
if len(items) == 1 and items[0].is_set_literal:
return items[0]
return ExprNodes.MergedSequenceNode(pos, args=items, type=Builtin.set_type)
else:
# (merged) dict literal
items = []
dict_items = []
for part in parts:
if isinstance(part, list):
dict_items.extend(part)
else:
if dict_items:
items.append(ExprNodes.DictNode(dict_items[0].pos, key_value_pairs=dict_items))
dict_items = []
items.append(part)
if dict_items:
items.append(ExprNodes.DictNode(dict_items[0].pos, key_value_pairs=dict_items))
if len(items) == 1 and items[0].is_dict_literal:
return items[0]
return ExprNodes.MergedDictNode(pos, keyword_args=items, reject_duplicates=False)
# NOTE: no longer in Py3 :)
def p_backquote_expr(s):
# s.sy == '`'
pos = s.position()
s.next()
args = [p_test(s)]
while s.sy == ',':
s.next()
args.append(p_test(s))
s.expect('`')
if len(args) == 1:
arg = args[0]
else:
arg = ExprNodes.TupleNode(pos, args = args)
return ExprNodes.BackquoteNode(pos, arg = arg)
def p_simple_expr_list(s, expr=None):
exprs = expr is not None and [expr] or []
while s.sy not in expr_terminators:
exprs.append( p_test(s) )
if s.sy != ',':
break
s.next()
return exprs
def p_test_or_starred_expr_list(s, expr=None):
exprs = expr is not None and [expr] or []
while s.sy not in expr_terminators:
exprs.append(p_test_or_starred_expr(s))
if s.sy != ',':
break
s.next()
return exprs
#testlist: test (',' test)* [',']
def p_testlist(s):
pos = s.position()
expr = p_test(s)
if s.sy == ',':
s.next()
exprs = p_simple_expr_list(s, expr)
return ExprNodes.TupleNode(pos, args = exprs)
else:
return expr
# testlist_star_expr: (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] )
def p_testlist_star_expr(s):
pos = s.position()
expr = p_test_or_starred_expr(s)
if s.sy == ',':
s.next()
exprs = p_test_or_starred_expr_list(s, expr)
return ExprNodes.TupleNode(pos, args = exprs)
else:
return expr
# testlist_comp: (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] )
def p_testlist_comp(s):
pos = s.position()
expr = p_test_or_starred_expr(s)
if s.sy == ',':
s.next()
exprs = p_test_or_starred_expr_list(s, expr)
return ExprNodes.TupleNode(pos, args = exprs)
elif s.sy in ('for', 'async'):
return p_genexp(s, expr)
else:
return expr
def p_genexp(s, expr):
# s.sy == 'async' | 'for'
loop = p_comp_for(s, Nodes.ExprStatNode(
expr.pos, expr = ExprNodes.YieldExprNode(expr.pos, arg=expr)))
return ExprNodes.GeneratorExpressionNode(expr.pos, loop=loop)
expr_terminators = cython.declare(set, set([
')', ']', '}', ':', '=', 'NEWLINE']))
#-------------------------------------------------------
#
# Statements
#
#-------------------------------------------------------
def p_global_statement(s):
# assume s.sy == 'global'
pos = s.position()
s.next()
names = p_ident_list(s)
return Nodes.GlobalNode(pos, names = names)
def p_nonlocal_statement(s):
pos = s.position()
s.next()
names = p_ident_list(s)
return Nodes.NonlocalNode(pos, names = names)
def p_expression_or_assignment(s):
expr = p_testlist_star_expr(s)
if s.sy == ':' and (expr.is_name or expr.is_subscript or expr.is_attribute):
s.next()
expr.annotation = p_test(s)
if s.sy == '=' and expr.is_starred:
# This is a common enough error to make when learning Cython to let
# it fail as early as possible and give a very clear error message.
s.error("a starred assignment target must be in a list or tuple"
" - maybe you meant to use an index assignment: var[0] = ...",
pos=expr.pos)
expr_list = [expr]
while s.sy == '=':
s.next()
if s.sy == 'yield':
expr = p_yield_expression(s)
else:
expr = p_testlist_star_expr(s)
expr_list.append(expr)
if len(expr_list) == 1:
if re.match(r"([-+*/%^&|]|<<|>>|\*\*|//|@)=", s.sy):
lhs = expr_list[0]
if isinstance(lhs, ExprNodes.SliceIndexNode):
# implementation requires IndexNode
lhs = ExprNodes.IndexNode(
lhs.pos,
base=lhs.base,
index=make_slice_node(lhs.pos, lhs.start, lhs.stop))
elif not isinstance(lhs, (ExprNodes.AttributeNode, ExprNodes.IndexNode, ExprNodes.NameNode)):
error(lhs.pos, "Illegal operand for inplace operation.")
operator = s.sy[:-1]
s.next()
if s.sy == 'yield':
rhs = p_yield_expression(s)
else:
rhs = p_testlist(s)
return Nodes.InPlaceAssignmentNode(lhs.pos, operator=operator, lhs=lhs, rhs=rhs)
expr = expr_list[0]
return Nodes.ExprStatNode(expr.pos, expr=expr)
rhs = expr_list[-1]
if len(expr_list) == 2:
return Nodes.SingleAssignmentNode(rhs.pos, lhs=expr_list[0], rhs=rhs)
else:
return Nodes.CascadedAssignmentNode(rhs.pos, lhs_list=expr_list[:-1], rhs=rhs)
def p_print_statement(s):
# s.sy == 'print'
pos = s.position()
ends_with_comma = 0
s.next()
if s.sy == '>>':
s.next()
stream = p_test(s)
if s.sy == ',':
s.next()
ends_with_comma = s.sy in ('NEWLINE', 'EOF')
else:
stream = None
args = []
if s.sy not in ('NEWLINE', 'EOF'):
args.append(p_test(s))
while s.sy == ',':
s.next()
if s.sy in ('NEWLINE', 'EOF'):
ends_with_comma = 1
break
args.append(p_test(s))
arg_tuple = ExprNodes.TupleNode(pos, args=args)
return Nodes.PrintStatNode(pos,
arg_tuple=arg_tuple, stream=stream,
append_newline=not ends_with_comma)
def p_exec_statement(s):
# s.sy == 'exec'
pos = s.position()
s.next()
code = p_bit_expr(s)
if isinstance(code, ExprNodes.TupleNode):
# Py3 compatibility syntax
tuple_variant = True
args = code.args
if len(args) not in (2, 3):
s.error("expected tuple of length 2 or 3, got length %d" % len(args),
pos=pos, fatal=False)
args = [code]
else:
tuple_variant = False
args = [code]
if s.sy == 'in':
if tuple_variant:
s.error("tuple variant of exec does not support additional 'in' arguments",
fatal=False)
s.next()
args.append(p_test(s))
if s.sy == ',':
s.next()
args.append(p_test(s))
return Nodes.ExecStatNode(pos, args=args)
def p_del_statement(s):
# s.sy == 'del'
pos = s.position()
s.next()
# FIXME: 'exprlist' in Python
args = p_simple_expr_list(s)
return Nodes.DelStatNode(pos, args = args)
def p_pass_statement(s, with_newline = 0):
pos = s.position()
s.expect('pass')
if with_newline:
s.expect_newline("Expected a newline", ignore_semicolon=True)
return Nodes.PassStatNode(pos)
def p_break_statement(s):
# s.sy == 'break'
pos = s.position()
s.next()
return Nodes.BreakStatNode(pos)
def p_continue_statement(s):
# s.sy == 'continue'
pos = s.position()
s.next()
return Nodes.ContinueStatNode(pos)
def p_return_statement(s):
# s.sy == 'return'
pos = s.position()
s.next()
if s.sy not in statement_terminators:
value = p_testlist(s)
else:
value = None
return Nodes.ReturnStatNode(pos, value = value)
def p_raise_statement(s):
# s.sy == 'raise'
pos = s.position()
s.next()
exc_type = None
exc_value = None
exc_tb = None
cause = None
if s.sy not in statement_terminators:
exc_type = p_test(s)
if s.sy == ',':
s.next()
exc_value = p_test(s)
if s.sy == ',':
s.next()
exc_tb = p_test(s)
elif s.sy == 'from':
s.next()
cause = p_test(s)
if exc_type or exc_value or exc_tb:
return Nodes.RaiseStatNode(pos,
exc_type = exc_type,
exc_value = exc_value,
exc_tb = exc_tb,
cause = cause)
else:
return Nodes.ReraiseStatNode(pos)
def p_import_statement(s):
# s.sy in ('import', 'cimport')
pos = s.position()
kind = s.sy
s.next()
items = [p_dotted_name(s, as_allowed=1)]
while s.sy == ',':
s.next()
items.append(p_dotted_name(s, as_allowed=1))
stats = []
is_absolute = Future.absolute_import in s.context.future_directives
for pos, target_name, dotted_name, as_name in items:
if kind == 'cimport':
stat = Nodes.CImportStatNode(
pos,
module_name=dotted_name,
as_name=as_name,
is_absolute=is_absolute)
else:
if as_name and "." in dotted_name:
name_list = ExprNodes.ListNode(pos, args=[
ExprNodes.IdentifierStringNode(pos, value=s.context.intern_ustring("*"))])
else:
name_list = None
stat = Nodes.SingleAssignmentNode(
pos,
lhs=ExprNodes.NameNode(pos, name=as_name or target_name),
rhs=ExprNodes.ImportNode(
pos,
module_name=ExprNodes.IdentifierStringNode(pos, value=dotted_name),
level=0 if is_absolute else None,
name_list=name_list))
stats.append(stat)
return Nodes.StatListNode(pos, stats=stats)
def p_from_import_statement(s, first_statement = 0):
# s.sy == 'from'
pos = s.position()
s.next()
if s.sy == '.':
# count relative import level
level = 0
while s.sy == '.':
level += 1
s.next()
else:
level = None
if level is not None and s.sy in ('import', 'cimport'):
# we are dealing with "from .. import foo, bar"
dotted_name_pos, dotted_name = s.position(), s.context.intern_ustring('')
else:
if level is None and Future.absolute_import in s.context.future_directives:
level = 0
(dotted_name_pos, _, dotted_name, _) = p_dotted_name(s, as_allowed=False)
if s.sy not in ('import', 'cimport'):
s.error("Expected 'import' or 'cimport'")
kind = s.sy
s.next()
is_cimport = kind == 'cimport'
is_parenthesized = False
if s.sy == '*':
imported_names = [(s.position(), s.context.intern_ustring("*"), None, None)]
s.next()
else:
if s.sy == '(':
is_parenthesized = True
s.next()
imported_names = [p_imported_name(s, is_cimport)]
while s.sy == ',':
s.next()
if is_parenthesized and s.sy == ')':
break
imported_names.append(p_imported_name(s, is_cimport))
if is_parenthesized:
s.expect(')')
if dotted_name == '__future__':
if not first_statement:
s.error("from __future__ imports must occur at the beginning of the file")
elif level:
s.error("invalid syntax")
else:
for (name_pos, name, as_name, kind) in imported_names:
if name == "braces":
s.error("not a chance", name_pos)
break
try:
directive = getattr(Future, name)
except AttributeError:
s.error("future feature %s is not defined" % name, name_pos)
break
s.context.future_directives.add(directive)
return Nodes.PassStatNode(pos)
elif kind == 'cimport':
return Nodes.FromCImportStatNode(
pos, module_name=dotted_name,
relative_level=level,
imported_names=imported_names)
else:
imported_name_strings = []
items = []
for (name_pos, name, as_name, kind) in imported_names:
imported_name_strings.append(
ExprNodes.IdentifierStringNode(name_pos, value=name))
items.append(
(name, ExprNodes.NameNode(name_pos, name=as_name or name)))
import_list = ExprNodes.ListNode(
imported_names[0][0], args=imported_name_strings)
return Nodes.FromImportStatNode(pos,
module = ExprNodes.ImportNode(dotted_name_pos,
module_name = ExprNodes.IdentifierStringNode(pos, value = dotted_name),
level = level,
name_list = import_list),
items = items)
imported_name_kinds = cython.declare(set, set(['class', 'struct', 'union']))
def p_imported_name(s, is_cimport):
pos = s.position()
kind = None
if is_cimport and s.systring in imported_name_kinds:
kind = s.systring
warning(pos, 'the "from module cimport %s name" syntax is deprecated and '
'will be removed in Cython 3.0' % kind, 2)
s.next()
name = p_ident(s)
as_name = p_as_name(s)
return (pos, name, as_name, kind)
def p_dotted_name(s, as_allowed):
pos = s.position()
target_name = p_ident(s)
as_name = None
names = [target_name]
while s.sy == '.':
s.next()
names.append(p_ident(s))
if as_allowed:
as_name = p_as_name(s)
return (pos, target_name, s.context.intern_ustring(u'.'.join(names)), as_name)
def p_as_name(s):
if s.sy == 'IDENT' and s.systring == 'as':
s.next()
return p_ident(s)
else:
return None
def p_assert_statement(s):
# s.sy == 'assert'
pos = s.position()
s.next()
cond = p_test(s)
if s.sy == ',':
s.next()
value = p_test(s)
else:
value = None
return Nodes.AssertStatNode(pos, cond = cond, value = value)
statement_terminators = cython.declare(set, set([';', 'NEWLINE', 'EOF']))
def p_if_statement(s):
# s.sy == 'if'
pos = s.position()
s.next()
if_clauses = [p_if_clause(s)]
while s.sy == 'elif':
s.next()
if_clauses.append(p_if_clause(s))
else_clause = p_else_clause(s)
return Nodes.IfStatNode(pos,
if_clauses = if_clauses, else_clause = else_clause)
def p_if_clause(s):
pos = s.position()
test = p_test(s)
body = p_suite(s)
return Nodes.IfClauseNode(pos,
condition = test, body = body)
def p_else_clause(s):
if s.sy == 'else':
s.next()
return p_suite(s)
else:
return None
def p_while_statement(s):
# s.sy == 'while'
pos = s.position()
s.next()
test = p_test(s)
body = p_suite(s)
else_clause = p_else_clause(s)
return Nodes.WhileStatNode(pos,
condition = test, body = body,
else_clause = else_clause)
def p_for_statement(s, is_async=False):
# s.sy == 'for'
pos = s.position()
s.next()
kw = p_for_bounds(s, allow_testlist=True, is_async=is_async)
body = p_suite(s)
else_clause = p_else_clause(s)
kw.update(body=body, else_clause=else_clause, is_async=is_async)
return Nodes.ForStatNode(pos, **kw)
def p_for_bounds(s, allow_testlist=True, is_async=False):
target = p_for_target(s)
if s.sy == 'in':
s.next()
iterator = p_for_iterator(s, allow_testlist, is_async=is_async)
return dict(target=target, iterator=iterator)
elif not s.in_python_file and not is_async:
if s.sy == 'from':
s.next()
bound1 = p_bit_expr(s)
else:
# Support shorter "for a <= x < b" syntax
bound1, target = target, None
rel1 = p_for_from_relation(s)
name2_pos = s.position()
name2 = p_ident(s)
rel2_pos = s.position()
rel2 = p_for_from_relation(s)
bound2 = p_bit_expr(s)
step = p_for_from_step(s)
if target is None:
target = ExprNodes.NameNode(name2_pos, name = name2)
else:
if not target.is_name:
error(target.pos,
"Target of for-from statement must be a variable name")
elif name2 != target.name:
error(name2_pos,
"Variable name in for-from range does not match target")
if rel1[0] != rel2[0]:
error(rel2_pos,
"Relation directions in for-from do not match")
return dict(target = target,
bound1 = bound1,
relation1 = rel1,
relation2 = rel2,
bound2 = bound2,
step = step,
)
else:
s.expect('in')
return {}
def p_for_from_relation(s):
if s.sy in inequality_relations:
op = s.sy
s.next()
return op
else:
s.error("Expected one of '<', '<=', '>' '>='")
def p_for_from_step(s):
if s.sy == 'IDENT' and s.systring == 'by':
s.next()
step = p_bit_expr(s)
return step
else:
return None
inequality_relations = cython.declare(set, set(['<', '<=', '>', '>=']))
def p_target(s, terminator):
pos = s.position()
expr = p_starred_expr(s)
if s.sy == ',':
s.next()
exprs = [expr]
while s.sy != terminator:
exprs.append(p_starred_expr(s))
if s.sy != ',':
break
s.next()
return ExprNodes.TupleNode(pos, args = exprs)
else:
return expr
def p_for_target(s):
return p_target(s, 'in')
def p_for_iterator(s, allow_testlist=True, is_async=False):
pos = s.position()
if allow_testlist:
expr = p_testlist(s)
else:
expr = p_or_test(s)
return (ExprNodes.AsyncIteratorNode if is_async else ExprNodes.IteratorNode)(pos, sequence=expr)
def p_try_statement(s):
# s.sy == 'try'
pos = s.position()
s.next()
body = p_suite(s)
except_clauses = []
else_clause = None
if s.sy in ('except', 'else'):
while s.sy == 'except':
except_clauses.append(p_except_clause(s))
if s.sy == 'else':
s.next()
else_clause = p_suite(s)
body = Nodes.TryExceptStatNode(pos,
body = body, except_clauses = except_clauses,
else_clause = else_clause)
if s.sy != 'finally':
return body
# try-except-finally is equivalent to nested try-except/try-finally
if s.sy == 'finally':
s.next()
finally_clause = p_suite(s)
return Nodes.TryFinallyStatNode(pos,
body = body, finally_clause = finally_clause)
else:
s.error("Expected 'except' or 'finally'")
def p_except_clause(s):
# s.sy == 'except'
pos = s.position()
s.next()
exc_type = None
exc_value = None
is_except_as = False
if s.sy != ':':
exc_type = p_test(s)
# normalise into list of single exception tests
if isinstance(exc_type, ExprNodes.TupleNode):
exc_type = exc_type.args
else:
exc_type = [exc_type]
if s.sy == ',' or (s.sy == 'IDENT' and s.systring == 'as'
and s.context.language_level == 2):
s.next()
exc_value = p_test(s)
elif s.sy == 'IDENT' and s.systring == 'as':
# Py3 syntax requires a name here
s.next()
pos2 = s.position()
name = p_ident(s)
exc_value = ExprNodes.NameNode(pos2, name = name)
is_except_as = True
body = p_suite(s)
return Nodes.ExceptClauseNode(pos,
pattern = exc_type, target = exc_value,
body = body, is_except_as=is_except_as)
def p_include_statement(s, ctx):
pos = s.position()
s.next() # 'include'
unicode_include_file_name = p_string_literal(s, 'u')[2]
s.expect_newline("Syntax error in include statement")
if s.compile_time_eval:
include_file_name = unicode_include_file_name
include_file_path = s.context.find_include_file(include_file_name, pos)
if include_file_path:
s.included_files.append(include_file_name)
with Utils.open_source_file(include_file_path) as f:
source_desc = FileSourceDescriptor(include_file_path)
s2 = PyrexScanner(f, source_desc, s, source_encoding=f.encoding, parse_comments=s.parse_comments)
tree = p_statement_list(s2, ctx)
return tree
else:
return None
else:
return Nodes.PassStatNode(pos)
def p_with_statement(s):
s.next() # 'with'
if s.systring == 'template' and not s.in_python_file:
node = p_with_template(s)
else:
node = p_with_items(s)
return node
def p_with_items(s, is_async=False):
pos = s.position()
if not s.in_python_file and s.sy == 'IDENT' and s.systring in ('nogil', 'gil'):
if is_async:
s.error("with gil/nogil cannot be async")
state = s.systring
s.next()
if s.sy == ',':
s.next()
body = p_with_items(s)
else:
body = p_suite(s)
return Nodes.GILStatNode(pos, state=state, body=body)
else:
manager = p_test(s)
target = None
if s.sy == 'IDENT' and s.systring == 'as':
s.next()
target = p_starred_expr(s)
if s.sy == ',':
s.next()
body = p_with_items(s, is_async=is_async)
else:
body = p_suite(s)
return Nodes.WithStatNode(pos, manager=manager, target=target, body=body, is_async=is_async)
def p_with_template(s):
pos = s.position()
templates = []
s.next()
s.expect('[')
templates.append(s.systring)
s.next()
while s.systring == ',':
s.next()
templates.append(s.systring)
s.next()
s.expect(']')
if s.sy == ':':
s.next()
s.expect_newline("Syntax error in template function declaration")
s.expect_indent()
body_ctx = Ctx()
body_ctx.templates = templates
func_or_var = p_c_func_or_var_declaration(s, pos, body_ctx)
s.expect_dedent()
return func_or_var
else:
error(pos, "Syntax error in template function declaration")
def p_simple_statement(s, first_statement = 0):
#print "p_simple_statement:", s.sy, s.systring ###
if s.sy == 'global':
node = p_global_statement(s)
elif s.sy == 'nonlocal':
node = p_nonlocal_statement(s)
elif s.sy == 'print':
node = p_print_statement(s)
elif s.sy == 'exec':
node = p_exec_statement(s)
elif s.sy == 'del':
node = p_del_statement(s)
elif s.sy == 'break':
node = p_break_statement(s)
elif s.sy == 'continue':
node = p_continue_statement(s)
elif s.sy == 'return':
node = p_return_statement(s)
elif s.sy == 'raise':
node = p_raise_statement(s)
elif s.sy in ('import', 'cimport'):
node = p_import_statement(s)
elif s.sy == 'from':
node = p_from_import_statement(s, first_statement = first_statement)
elif s.sy == 'yield':
node = p_yield_statement(s)
elif s.sy == 'assert':
node = p_assert_statement(s)
elif s.sy == 'pass':
node = p_pass_statement(s)
else:
node = p_expression_or_assignment(s)
return node
def p_simple_statement_list(s, ctx, first_statement = 0):
# Parse a series of simple statements on one line
# separated by semicolons.
stat = p_simple_statement(s, first_statement = first_statement)
pos = stat.pos
stats = []
if not isinstance(stat, Nodes.PassStatNode):
stats.append(stat)
while s.sy == ';':
#print "p_simple_statement_list: maybe more to follow" ###
s.next()
if s.sy in ('NEWLINE', 'EOF'):
break
stat = p_simple_statement(s, first_statement = first_statement)
if isinstance(stat, Nodes.PassStatNode):
continue
stats.append(stat)
first_statement = False
if not stats:
stat = Nodes.PassStatNode(pos)
elif len(stats) == 1:
stat = stats[0]
else:
stat = Nodes.StatListNode(pos, stats = stats)
if s.sy not in ('NEWLINE', 'EOF'):
# provide a better error message for users who accidentally write Cython code in .py files
if isinstance(stat, Nodes.ExprStatNode):
if stat.expr.is_name and stat.expr.name == 'cdef':
s.error("The 'cdef' keyword is only allowed in Cython files (pyx/pxi/pxd)", pos)
s.expect_newline("Syntax error in simple statement list")
return stat
def p_compile_time_expr(s):
old = s.compile_time_expr
s.compile_time_expr = 1
expr = p_testlist(s)
s.compile_time_expr = old
return expr
def p_DEF_statement(s):
pos = s.position()
denv = s.compile_time_env
s.next() # 'DEF'
name = p_ident(s)
s.expect('=')
expr = p_compile_time_expr(s)
if s.compile_time_eval:
value = expr.compile_time_value(denv)
#print "p_DEF_statement: %s = %r" % (name, value) ###
denv.declare(name, value)
s.expect_newline("Expected a newline", ignore_semicolon=True)
return Nodes.PassStatNode(pos)
def p_IF_statement(s, ctx):
pos = s.position()
saved_eval = s.compile_time_eval
current_eval = saved_eval
denv = s.compile_time_env
result = None
while 1:
s.next() # 'IF' or 'ELIF'
expr = p_compile_time_expr(s)
s.compile_time_eval = current_eval and bool(expr.compile_time_value(denv))
body = p_suite(s, ctx)
if s.compile_time_eval:
result = body
current_eval = 0
if s.sy != 'ELIF':
break
if s.sy == 'ELSE':
s.next()
s.compile_time_eval = current_eval
body = p_suite(s, ctx)
if current_eval:
result = body
if not result:
result = Nodes.PassStatNode(pos)
s.compile_time_eval = saved_eval
return result
def p_statement(s, ctx, first_statement = 0):
cdef_flag = ctx.cdef_flag
decorators = None
if s.sy == 'ctypedef':
if ctx.level not in ('module', 'module_pxd'):
s.error("ctypedef statement not allowed here")
#if ctx.api:
# error(s.position(), "'api' not allowed with 'ctypedef'")
return p_ctypedef_statement(s, ctx)
elif s.sy == 'DEF':
return p_DEF_statement(s)
elif s.sy == 'IF':
return p_IF_statement(s, ctx)
elif s.sy == '@':
if ctx.level not in ('module', 'class', 'c_class', 'function', 'property', 'module_pxd', 'c_class_pxd', 'other'):
s.error('decorator not allowed here')
s.level = ctx.level
decorators = p_decorators(s)
if not ctx.allow_struct_enum_decorator and s.sy not in ('def', 'cdef', 'cpdef', 'class', 'async'):
if s.sy == 'IDENT' and s.systring == 'async':
pass # handled below
else:
s.error("Decorators can only be followed by functions or classes")
elif s.sy == 'pass' and cdef_flag:
# empty cdef block
return p_pass_statement(s, with_newline=1)
overridable = 0
if s.sy == 'cdef':
cdef_flag = 1
s.next()
elif s.sy == 'cpdef':
cdef_flag = 1
overridable = 1
s.next()
if cdef_flag:
if ctx.level not in ('module', 'module_pxd', 'function', 'c_class', 'c_class_pxd'):
s.error('cdef statement not allowed here')
s.level = ctx.level
node = p_cdef_statement(s, ctx(overridable=overridable))
if decorators is not None:
tup = (Nodes.CFuncDefNode, Nodes.CVarDefNode, Nodes.CClassDefNode)
if ctx.allow_struct_enum_decorator:
tup += (Nodes.CStructOrUnionDefNode, Nodes.CEnumDefNode)
if not isinstance(node, tup):
s.error("Decorators can only be followed by functions or classes")
node.decorators = decorators
return node
else:
if ctx.api:
s.error("'api' not allowed with this statement", fatal=False)
elif s.sy == 'def':
# def statements aren't allowed in pxd files, except
# as part of a cdef class
if ('pxd' in ctx.level) and (ctx.level != 'c_class_pxd'):
s.error('def statement not allowed here')
s.level = ctx.level
return p_def_statement(s, decorators)
elif s.sy == 'class':
if ctx.level not in ('module', 'function', 'class', 'other'):
s.error("class definition not allowed here")
return p_class_statement(s, decorators)
elif s.sy == 'include':
if ctx.level not in ('module', 'module_pxd'):
s.error("include statement not allowed here")
return p_include_statement(s, ctx)
elif ctx.level == 'c_class' and s.sy == 'IDENT' and s.systring == 'property':
return p_property_decl(s)
elif s.sy == 'pass' and ctx.level != 'property':
return p_pass_statement(s, with_newline=True)
else:
if ctx.level in ('c_class_pxd', 'property'):
node = p_ignorable_statement(s)
if node is not None:
return node
s.error("Executable statement not allowed here")
if s.sy == 'if':
return p_if_statement(s)
elif s.sy == 'while':
return p_while_statement(s)
elif s.sy == 'for':
return p_for_statement(s)
elif s.sy == 'try':
return p_try_statement(s)
elif s.sy == 'with':
return p_with_statement(s)
elif s.sy == 'async':
s.next()
return p_async_statement(s, ctx, decorators)
else:
if s.sy == 'IDENT' and s.systring == 'async':
ident_name = s.systring
# PEP 492 enables the async/await keywords when it spots "async def ..."
s.next()
if s.sy == 'def':
return p_async_statement(s, ctx, decorators)
elif decorators:
s.error("Decorators can only be followed by functions or classes")
s.put_back('IDENT', ident_name) # re-insert original token
return p_simple_statement_list(s, ctx, first_statement=first_statement)
def p_statement_list(s, ctx, first_statement = 0):
# Parse a series of statements separated by newlines.
pos = s.position()
stats = []
while s.sy not in ('DEDENT', 'EOF'):
stat = p_statement(s, ctx, first_statement = first_statement)
if isinstance(stat, Nodes.PassStatNode):
continue
stats.append(stat)
first_statement = False
if not stats:
return Nodes.PassStatNode(pos)
elif len(stats) == 1:
return stats[0]
else:
return Nodes.StatListNode(pos, stats = stats)
def p_suite(s, ctx=Ctx()):
return p_suite_with_docstring(s, ctx, with_doc_only=False)[1]
def p_suite_with_docstring(s, ctx, with_doc_only=False):
s.expect(':')
doc = None
if s.sy == 'NEWLINE':
s.next()
s.expect_indent()
if with_doc_only:
doc = p_doc_string(s)
body = p_statement_list(s, ctx)
s.expect_dedent()
else:
if ctx.api:
s.error("'api' not allowed with this statement", fatal=False)
if ctx.level in ('module', 'class', 'function', 'other'):
body = p_simple_statement_list(s, ctx)
else:
body = p_pass_statement(s)
s.expect_newline("Syntax error in declarations", ignore_semicolon=True)
if not with_doc_only:
doc, body = _extract_docstring(body)
return doc, body
def p_positional_and_keyword_args(s, end_sy_set, templates = None):
"""
Parses positional and keyword arguments. end_sy_set
should contain any s.sy that terminate the argument list.
Argument expansion (* and **) are not allowed.
Returns: (positional_args, keyword_args)
"""
positional_args = []
keyword_args = []
pos_idx = 0
while s.sy not in end_sy_set:
if s.sy == '*' or s.sy == '**':
s.error('Argument expansion not allowed here.', fatal=False)
parsed_type = False
if s.sy == 'IDENT' and s.peek()[0] == '=':
ident = s.systring
s.next() # s.sy is '='
s.next()
if looking_at_expr(s):
arg = p_test(s)
else:
base_type = p_c_base_type(s, templates = templates)
declarator = p_c_declarator(s, empty = 1)
arg = Nodes.CComplexBaseTypeNode(base_type.pos,
base_type = base_type, declarator = declarator)
parsed_type = True
keyword_node = ExprNodes.IdentifierStringNode(arg.pos, value=ident)
keyword_args.append((keyword_node, arg))
was_keyword = True
else:
if looking_at_expr(s):
arg = p_test(s)
else:
base_type = p_c_base_type(s, templates = templates)
declarator = p_c_declarator(s, empty = 1)
arg = Nodes.CComplexBaseTypeNode(base_type.pos,
base_type = base_type, declarator = declarator)
parsed_type = True
positional_args.append(arg)
pos_idx += 1
if len(keyword_args) > 0:
s.error("Non-keyword arg following keyword arg",
pos=arg.pos)
if s.sy != ',':
if s.sy not in end_sy_set:
if parsed_type:
s.error("Unmatched %s" % " or ".join(end_sy_set))
break
s.next()
return positional_args, keyword_args
def p_c_base_type(s, self_flag = 0, nonempty = 0, templates = None):
# If self_flag is true, this is the base type for the
# self argument of a C method of an extension type.
if s.sy == '(':
return p_c_complex_base_type(s, templates = templates)
else:
return p_c_simple_base_type(s, self_flag, nonempty = nonempty, templates = templates)
def p_calling_convention(s):
if s.sy == 'IDENT' and s.systring in calling_convention_words:
result = s.systring
s.next()
return result
else:
return ""
calling_convention_words = cython.declare(
set, set(["__stdcall", "__cdecl", "__fastcall"]))
def p_c_complex_base_type(s, templates = None):
# s.sy == '('
pos = s.position()
s.next()
base_type = p_c_base_type(s, templates=templates)
declarator = p_c_declarator(s, empty=True)
type_node = Nodes.CComplexBaseTypeNode(
pos, base_type=base_type, declarator=declarator)
if s.sy == ',':
components = [type_node]
while s.sy == ',':
s.next()
if s.sy == ')':
break
base_type = p_c_base_type(s, templates=templates)
declarator = p_c_declarator(s, empty=True)
components.append(Nodes.CComplexBaseTypeNode(
pos, base_type=base_type, declarator=declarator))
type_node = Nodes.CTupleBaseTypeNode(pos, components = components)
s.expect(')')
if s.sy == '[':
if is_memoryviewslice_access(s):
type_node = p_memoryviewslice_access(s, type_node)
else:
type_node = p_buffer_or_template(s, type_node, templates)
return type_node
def p_c_simple_base_type(s, self_flag, nonempty, templates = None):
#print "p_c_simple_base_type: self_flag =", self_flag, nonempty
is_basic = 0
signed = 1
longness = 0
complex = 0
module_path = []
pos = s.position()
if not s.sy == 'IDENT':
error(pos, "Expected an identifier, found '%s'" % s.sy)
if s.systring == 'const':
s.next()
base_type = p_c_base_type(s, self_flag=self_flag, nonempty=nonempty, templates=templates)
if isinstance(base_type, Nodes.MemoryViewSliceTypeNode):
# reverse order to avoid having to write "(const int)[:]"
base_type.base_type_node = Nodes.CConstTypeNode(pos, base_type=base_type.base_type_node)
return base_type
return Nodes.CConstTypeNode(pos, base_type=base_type)
if looking_at_base_type(s):
#print "p_c_simple_base_type: looking_at_base_type at", s.position()
is_basic = 1
if s.sy == 'IDENT' and s.systring in special_basic_c_types:
signed, longness = special_basic_c_types[s.systring]
name = s.systring
s.next()
else:
signed, longness = p_sign_and_longness(s)
if s.sy == 'IDENT' and s.systring in basic_c_type_names:
name = s.systring
s.next()
else:
name = 'int' # long [int], short [int], long [int] complex, etc.
if s.sy == 'IDENT' and s.systring == 'complex':
complex = 1
s.next()
elif looking_at_dotted_name(s):
#print "p_c_simple_base_type: looking_at_type_name at", s.position()
name = s.systring
s.next()
while s.sy == '.':
module_path.append(name)
s.next()
name = p_ident(s)
else:
name = s.systring
s.next()
if nonempty and s.sy != 'IDENT':
# Make sure this is not a declaration of a variable or function.
if s.sy == '(':
s.next()
if (s.sy == '*' or s.sy == '**' or s.sy == '&'
or (s.sy == 'IDENT' and s.systring in calling_convention_words)):
s.put_back('(', '(')
else:
s.put_back('(', '(')
s.put_back('IDENT', name)
name = None
elif s.sy not in ('*', '**', '[', '&'):
s.put_back('IDENT', name)
name = None
type_node = Nodes.CSimpleBaseTypeNode(pos,
name = name, module_path = module_path,
is_basic_c_type = is_basic, signed = signed,
complex = complex, longness = longness,
is_self_arg = self_flag, templates = templates)
# declarations here.
if s.sy == '[':
if is_memoryviewslice_access(s):
type_node = p_memoryviewslice_access(s, type_node)
else:
type_node = p_buffer_or_template(s, type_node, templates)
if s.sy == '.':
s.next()
name = p_ident(s)
type_node = Nodes.CNestedBaseTypeNode(pos, base_type = type_node, name = name)
return type_node
def p_buffer_or_template(s, base_type_node, templates):
# s.sy == '['
pos = s.position()
s.next()
# Note that buffer_positional_options_count=1, so the only positional argument is dtype.
# For templated types, all parameters are types.
positional_args, keyword_args = (
p_positional_and_keyword_args(s, (']',), templates)
)
s.expect(']')
if s.sy == '[':
base_type_node = p_buffer_or_template(s, base_type_node, templates)
keyword_dict = ExprNodes.DictNode(pos,
key_value_pairs = [
ExprNodes.DictItemNode(pos=key.pos, key=key, value=value)
for key, value in keyword_args
])
result = Nodes.TemplatedTypeNode(pos,
positional_args = positional_args,
keyword_args = keyword_dict,
base_type_node = base_type_node)
return result
def p_bracketed_base_type(s, base_type_node, nonempty, empty):
# s.sy == '['
if empty and not nonempty:
# sizeof-like thing. Only anonymous C arrays allowed (int[SIZE]).
return base_type_node
elif not empty and nonempty:
# declaration of either memoryview slice or buffer.
if is_memoryviewslice_access(s):
return p_memoryviewslice_access(s, base_type_node)
else:
return p_buffer_or_template(s, base_type_node, None)
# return p_buffer_access(s, base_type_node)
elif not empty and not nonempty:
# only anonymous C arrays and memoryview slice arrays here. We
# disallow buffer declarations for now, due to ambiguity with anonymous
# C arrays.
if is_memoryviewslice_access(s):
return p_memoryviewslice_access(s, base_type_node)
else:
return base_type_node
def is_memoryviewslice_access(s):
# s.sy == '['
# a memoryview slice declaration is distinguishable from a buffer access
# declaration by the first entry in the bracketed list. The buffer will
# not have an unnested colon in the first entry; the memoryview slice will.
saved = [(s.sy, s.systring)]
s.next()
retval = False
if s.systring == ':':
retval = True
elif s.sy == 'INT':
saved.append((s.sy, s.systring))
s.next()
if s.sy == ':':
retval = True
for sv in saved[::-1]:
s.put_back(*sv)
return retval
def p_memoryviewslice_access(s, base_type_node):
# s.sy == '['
pos = s.position()
s.next()
subscripts, _ = p_subscript_list(s)
# make sure each entry in subscripts is a slice
for subscript in subscripts:
if len(subscript) < 2:
s.error("An axis specification in memoryview declaration does not have a ':'.")
s.expect(']')
indexes = make_slice_nodes(pos, subscripts)
result = Nodes.MemoryViewSliceTypeNode(pos,
base_type_node = base_type_node,
axes = indexes)
return result
def looking_at_name(s):
return s.sy == 'IDENT' and not s.systring in calling_convention_words
def looking_at_expr(s):
if s.systring in base_type_start_words:
return False
elif s.sy == 'IDENT':
is_type = False
name = s.systring
dotted_path = []
s.next()
while s.sy == '.':
s.next()
dotted_path.append(s.systring)
s.expect('IDENT')
saved = s.sy, s.systring
if s.sy == 'IDENT':
is_type = True
elif s.sy == '*' or s.sy == '**':
s.next()
is_type = s.sy in (')', ']')
s.put_back(*saved)
elif s.sy == '(':
s.next()
is_type = s.sy == '*'
s.put_back(*saved)
elif s.sy == '[':
s.next()
is_type = s.sy == ']' or not looking_at_expr(s) # could be a nested template type
s.put_back(*saved)
dotted_path.reverse()
for p in dotted_path:
s.put_back('IDENT', p)
s.put_back('.', '.')
s.put_back('IDENT', name)
return not is_type and saved[0]
else:
return True
def looking_at_base_type(s):
#print "looking_at_base_type?", s.sy, s.systring, s.position()
return s.sy == 'IDENT' and s.systring in base_type_start_words
def looking_at_dotted_name(s):
if s.sy == 'IDENT':
name = s.systring
s.next()
result = s.sy == '.'
s.put_back('IDENT', name)
return result
else:
return 0
def looking_at_call(s):
"See if we're looking at a.b.c("
# Don't mess up the original position, so save and restore it.
# Unfortunately there's no good way to handle this, as a subsequent call
# to next() will not advance the position until it reads a new token.
position = s.start_line, s.start_col
result = looking_at_expr(s) == u'('
if not result:
s.start_line, s.start_col = position
return result
basic_c_type_names = cython.declare(
set, set(["void", "char", "int", "float", "double", "bint"]))
special_basic_c_types = cython.declare(dict, {
# name : (signed, longness)
"Py_UNICODE" : (0, 0),
"Py_UCS4" : (0, 0),
"Py_hash_t" : (2, 0),
"Py_ssize_t" : (2, 0),
"ssize_t" : (2, 0),
"size_t" : (0, 0),
"ptrdiff_t" : (2, 0),
"Py_tss_t" : (1, 0),
})
sign_and_longness_words = cython.declare(
set, set(["short", "long", "signed", "unsigned"]))
base_type_start_words = cython.declare(
set,
basic_c_type_names
| sign_and_longness_words
| set(special_basic_c_types))
struct_enum_union = cython.declare(
set, set(["struct", "union", "enum", "packed"]))
def p_sign_and_longness(s):
signed = 1
longness = 0
while s.sy == 'IDENT' and s.systring in sign_and_longness_words:
if s.systring == 'unsigned':
signed = 0
elif s.systring == 'signed':
signed = 2
elif s.systring == 'short':
longness = -1
elif s.systring == 'long':
longness += 1
s.next()
return signed, longness
def p_opt_cname(s):
literal = p_opt_string_literal(s, 'u')
if literal is not None:
cname = EncodedString(literal)
cname.encoding = s.source_encoding
else:
cname = None
return cname
def p_c_declarator(s, ctx = Ctx(), empty = 0, is_type = 0, cmethod_flag = 0,
assignable = 0, nonempty = 0,
calling_convention_allowed = 0):
# If empty is true, the declarator must be empty. If nonempty is true,
# the declarator must be nonempty. Otherwise we don't care.
# If cmethod_flag is true, then if this declarator declares
# a function, it's a C method of an extension type.
pos = s.position()
if s.sy == '(':
s.next()
if s.sy == ')' or looking_at_name(s):
base = Nodes.CNameDeclaratorNode(pos, name=s.context.intern_ustring(u""), cname=None)
result = p_c_func_declarator(s, pos, ctx, base, cmethod_flag)
else:
result = p_c_declarator(s, ctx, empty = empty, is_type = is_type,
cmethod_flag = cmethod_flag,
nonempty = nonempty,
calling_convention_allowed = 1)
s.expect(')')
else:
result = p_c_simple_declarator(s, ctx, empty, is_type, cmethod_flag,
assignable, nonempty)
if not calling_convention_allowed and result.calling_convention and s.sy != '(':
error(s.position(), "%s on something that is not a function"
% result.calling_convention)
while s.sy in ('[', '('):
pos = s.position()
if s.sy == '[':
result = p_c_array_declarator(s, result)
else: # sy == '('
s.next()
result = p_c_func_declarator(s, pos, ctx, result, cmethod_flag)
cmethod_flag = 0
return result
def p_c_array_declarator(s, base):
pos = s.position()
s.next() # '['
if s.sy != ']':
dim = p_testlist(s)
else:
dim = None
s.expect(']')
return Nodes.CArrayDeclaratorNode(pos, base = base, dimension = dim)
def p_c_func_declarator(s, pos, ctx, base, cmethod_flag):
# Opening paren has already been skipped
args = p_c_arg_list(s, ctx, cmethod_flag = cmethod_flag,
nonempty_declarators = 0)
ellipsis = p_optional_ellipsis(s)
s.expect(')')
nogil = p_nogil(s)
exc_val, exc_check = p_exception_value_clause(s)
# TODO - warning to enforce preferred exception specification order
nogil = nogil or p_nogil(s)
with_gil = p_with_gil(s)
return Nodes.CFuncDeclaratorNode(pos,
base = base, args = args, has_varargs = ellipsis,
exception_value = exc_val, exception_check = exc_check,
nogil = nogil or ctx.nogil or with_gil, with_gil = with_gil)
supported_overloaded_operators = cython.declare(set, set([
'+', '-', '*', '/', '%',
'++', '--', '~', '|', '&', '^', '<<', '>>', ',',
'==', '!=', '>=', '>', '<=', '<',
'[]', '()', '!', '=',
'bool',
]))
def p_c_simple_declarator(s, ctx, empty, is_type, cmethod_flag,
assignable, nonempty):
pos = s.position()
calling_convention = p_calling_convention(s)
if s.sy == '*':
s.next()
if s.systring == 'const':
const_pos = s.position()
s.next()
const_base = p_c_declarator(s, ctx, empty = empty,
is_type = is_type,
cmethod_flag = cmethod_flag,
assignable = assignable,
nonempty = nonempty)
base = Nodes.CConstDeclaratorNode(const_pos, base = const_base)
else:
base = p_c_declarator(s, ctx, empty = empty, is_type = is_type,
cmethod_flag = cmethod_flag,
assignable = assignable, nonempty = nonempty)
result = Nodes.CPtrDeclaratorNode(pos,
base = base)
elif s.sy == '**': # scanner returns this as a single token
s.next()
base = p_c_declarator(s, ctx, empty = empty, is_type = is_type,
cmethod_flag = cmethod_flag,
assignable = assignable, nonempty = nonempty)
result = Nodes.CPtrDeclaratorNode(pos,
base = Nodes.CPtrDeclaratorNode(pos,
base = base))
elif s.sy == '&':
s.next()
base = p_c_declarator(s, ctx, empty = empty, is_type = is_type,
cmethod_flag = cmethod_flag,
assignable = assignable, nonempty = nonempty)
result = Nodes.CReferenceDeclaratorNode(pos, base = base)
else:
rhs = None
if s.sy == 'IDENT':
name = s.systring
if empty:
error(s.position(), "Declarator should be empty")
s.next()
cname = p_opt_cname(s)
if name != 'operator' and s.sy == '=' and assignable:
s.next()
rhs = p_test(s)
else:
if nonempty:
error(s.position(), "Empty declarator")
name = ""
cname = None
if cname is None and ctx.namespace is not None and nonempty:
cname = ctx.namespace + "::" + name
if name == 'operator' and ctx.visibility == 'extern' and nonempty:
op = s.sy
if [1 for c in op if c in '+-*/<=>!%&|([^~,']:
s.next()
# Handle diphthong operators.
if op == '(':
s.expect(')')
op = '()'
elif op == '[':
s.expect(']')
op = '[]'
elif op in ('-', '+', '|', '&') and s.sy == op:
op *= 2 # ++, --, ...
s.next()
elif s.sy == '=':
op += s.sy # +=, -=, ...
s.next()
if op not in supported_overloaded_operators:
s.error("Overloading operator '%s' not yet supported." % op,
fatal=False)
name += op
elif op == 'IDENT':
op = s.systring;
if op not in supported_overloaded_operators:
s.error("Overloading operator '%s' not yet supported." % op,
fatal=False)
name = name + ' ' + op
s.next()
result = Nodes.CNameDeclaratorNode(pos,
name = name, cname = cname, default = rhs)
result.calling_convention = calling_convention
return result
def p_nogil(s):
if s.sy == 'IDENT' and s.systring == 'nogil':
s.next()
return 1
else:
return 0
def p_with_gil(s):
if s.sy == 'with':
s.next()
s.expect_keyword('gil')
return 1
else:
return 0
def p_exception_value_clause(s):
exc_val = None
exc_check = 0
if s.sy == 'IDENT' and s.systring == 'noexcept':
s.next()
exc_check = False # No-op in Cython 0.29.x
elif s.sy == 'except':
s.next()
if s.sy == '*':
exc_check = 1
s.next()
elif s.sy == '+':
exc_check = '+'
s.next()
if s.sy == 'IDENT':
name = s.systring
s.next()
exc_val = p_name(s, name)
elif s.sy == '*':
exc_val = ExprNodes.CharNode(s.position(), value=u'*')
s.next()
else:
if s.sy == '?':
exc_check = 1
s.next()
exc_val = p_test(s)
return exc_val, exc_check
c_arg_list_terminators = cython.declare(set, set(['*', '**', '.', ')', ':']))
def p_c_arg_list(s, ctx = Ctx(), in_pyfunc = 0, cmethod_flag = 0,
nonempty_declarators = 0, kw_only = 0, annotated = 1):
# Comma-separated list of C argument declarations, possibly empty.
# May have a trailing comma.
args = []
is_self_arg = cmethod_flag
while s.sy not in c_arg_list_terminators:
args.append(p_c_arg_decl(s, ctx, in_pyfunc, is_self_arg,
nonempty = nonempty_declarators, kw_only = kw_only,
annotated = annotated))
if s.sy != ',':
break
s.next()
is_self_arg = 0
return args
def p_optional_ellipsis(s):
if s.sy == '.':
expect_ellipsis(s)
return 1
else:
return 0
def p_c_arg_decl(s, ctx, in_pyfunc, cmethod_flag = 0, nonempty = 0,
kw_only = 0, annotated = 1):
pos = s.position()
not_none = or_none = 0
default = None
annotation = None
if s.in_python_file:
# empty type declaration
base_type = Nodes.CSimpleBaseTypeNode(pos,
name = None, module_path = [],
is_basic_c_type = 0, signed = 0,
complex = 0, longness = 0,
is_self_arg = cmethod_flag, templates = None)
else:
base_type = p_c_base_type(s, cmethod_flag, nonempty = nonempty)
declarator = p_c_declarator(s, ctx, nonempty = nonempty)
if s.sy in ('not', 'or') and not s.in_python_file:
kind = s.sy
s.next()
if s.sy == 'IDENT' and s.systring == 'None':
s.next()
else:
s.error("Expected 'None'")
if not in_pyfunc:
error(pos, "'%s None' only allowed in Python functions" % kind)
or_none = kind == 'or'
not_none = kind == 'not'
if annotated and s.sy == ':':
s.next()
annotation = p_test(s)
if s.sy == '=':
s.next()
if 'pxd' in ctx.level:
if s.sy in ['*', '?']:
# TODO(github/1736): Make this an error for inline declarations.
default = ExprNodes.NoneNode(pos)
s.next()
elif 'inline' in ctx.modifiers:
default = p_test(s)
else:
error(pos, "default values cannot be specified in pxd files, use ? or *")
else:
default = p_test(s)
return Nodes.CArgDeclNode(pos,
base_type = base_type,
declarator = declarator,
not_none = not_none,
or_none = or_none,
default = default,
annotation = annotation,
kw_only = kw_only)
def p_api(s):
if s.sy == 'IDENT' and s.systring == 'api':
s.next()
return 1
else:
return 0
def p_cdef_statement(s, ctx):
pos = s.position()
ctx.visibility = p_visibility(s, ctx.visibility)
ctx.api = ctx.api or p_api(s)
if ctx.api:
if ctx.visibility not in ('private', 'public'):
error(pos, "Cannot combine 'api' with '%s'" % ctx.visibility)
if (ctx.visibility == 'extern') and s.sy == 'from':
return p_cdef_extern_block(s, pos, ctx)
elif s.sy == 'import':
s.next()
return p_cdef_extern_block(s, pos, ctx)
elif p_nogil(s):
ctx.nogil = 1
if ctx.overridable:
error(pos, "cdef blocks cannot be declared cpdef")
return p_cdef_block(s, ctx)
elif s.sy == ':':
if ctx.overridable:
error(pos, "cdef blocks cannot be declared cpdef")
return p_cdef_block(s, ctx)
elif s.sy == 'class':
if ctx.level not in ('module', 'module_pxd'):
error(pos, "Extension type definition not allowed here")
if ctx.overridable:
error(pos, "Extension types cannot be declared cpdef")
return p_c_class_definition(s, pos, ctx)
elif s.sy == 'IDENT' and s.systring == 'cppclass':
return p_cpp_class_definition(s, pos, ctx)
elif s.sy == 'IDENT' and s.systring in struct_enum_union:
if ctx.level not in ('module', 'module_pxd'):
error(pos, "C struct/union/enum definition not allowed here")
if ctx.overridable:
if s.systring != 'enum':
error(pos, "C struct/union cannot be declared cpdef")
return p_struct_enum(s, pos, ctx)
elif s.sy == 'IDENT' and s.systring == 'fused':
return p_fused_definition(s, pos, ctx)
else:
return p_c_func_or_var_declaration(s, pos, ctx)
def p_cdef_block(s, ctx):
return p_suite(s, ctx(cdef_flag = 1))
def p_cdef_extern_block(s, pos, ctx):
if ctx.overridable:
error(pos, "cdef extern blocks cannot be declared cpdef")
include_file = None
s.expect('from')
if s.sy == '*':
s.next()
else:
include_file = p_string_literal(s, 'u')[2]
ctx = ctx(cdef_flag = 1, visibility = 'extern')
if s.systring == "namespace":
s.next()
ctx.namespace = p_string_literal(s, 'u')[2]
if p_nogil(s):
ctx.nogil = 1
# Use "docstring" as verbatim string to include
verbatim_include, body = p_suite_with_docstring(s, ctx, True)
return Nodes.CDefExternNode(pos,
include_file = include_file,
verbatim_include = verbatim_include,
body = body,
namespace = ctx.namespace)
def p_c_enum_definition(s, pos, ctx):
# s.sy == ident 'enum'
s.next()
if s.sy == 'IDENT':
name = s.systring
s.next()
cname = p_opt_cname(s)
if cname is None and ctx.namespace is not None:
cname = ctx.namespace + "::" + name
else:
name = None
cname = None
items = None
s.expect(':')
items = []
if s.sy != 'NEWLINE':
p_c_enum_line(s, ctx, items)
else:
s.next() # 'NEWLINE'
s.expect_indent()
while s.sy not in ('DEDENT', 'EOF'):
p_c_enum_line(s, ctx, items)
s.expect_dedent()
return Nodes.CEnumDefNode(
pos, name = name, cname = cname, items = items,
typedef_flag = ctx.typedef_flag, visibility = ctx.visibility,
create_wrapper = ctx.overridable,
api = ctx.api, in_pxd = ctx.level == 'module_pxd')
def p_c_enum_line(s, ctx, items):
if s.sy != 'pass':
p_c_enum_item(s, ctx, items)
while s.sy == ',':
s.next()
if s.sy in ('NEWLINE', 'EOF'):
break
p_c_enum_item(s, ctx, items)
else:
s.next()
s.expect_newline("Syntax error in enum item list")
def p_c_enum_item(s, ctx, items):
pos = s.position()
name = p_ident(s)
cname = p_opt_cname(s)
if cname is None and ctx.namespace is not None:
cname = ctx.namespace + "::" + name
value = None
if s.sy == '=':
s.next()
value = p_test(s)
items.append(Nodes.CEnumDefItemNode(pos,
name = name, cname = cname, value = value))
def p_c_struct_or_union_definition(s, pos, ctx):
packed = False
if s.systring == 'packed':
packed = True
s.next()
if s.sy != 'IDENT' or s.systring != 'struct':
s.expected('struct')
# s.sy == ident 'struct' or 'union'
kind = s.systring
s.next()
name = p_ident(s)
cname = p_opt_cname(s)
if cname is None and ctx.namespace is not None:
cname = ctx.namespace + "::" + name
attributes = None
if s.sy == ':':
s.next()
s.expect('NEWLINE')
s.expect_indent()
attributes = []
body_ctx = Ctx()
while s.sy != 'DEDENT':
if s.sy != 'pass':
attributes.append(
p_c_func_or_var_declaration(s, s.position(), body_ctx))
else:
s.next()
s.expect_newline("Expected a newline")
s.expect_dedent()
else:
s.expect_newline("Syntax error in struct or union definition")
return Nodes.CStructOrUnionDefNode(pos,
name = name, cname = cname, kind = kind, attributes = attributes,
typedef_flag = ctx.typedef_flag, visibility = ctx.visibility,
api = ctx.api, in_pxd = ctx.level == 'module_pxd', packed = packed)
def p_fused_definition(s, pos, ctx):
"""
c(type)def fused my_fused_type:
...
"""
# s.systring == 'fused'
if ctx.level not in ('module', 'module_pxd'):
error(pos, "Fused type definition not allowed here")
s.next()
name = p_ident(s)
s.expect(":")
s.expect_newline()
s.expect_indent()
types = []
while s.sy != 'DEDENT':
if s.sy != 'pass':
#types.append(p_c_declarator(s))
types.append(p_c_base_type(s)) #, nonempty=1))
else:
s.next()
s.expect_newline()
s.expect_dedent()
if not types:
error(pos, "Need at least one type")
return Nodes.FusedTypeNode(pos, name=name, types=types)
def p_struct_enum(s, pos, ctx):
if s.systring == 'enum':
return p_c_enum_definition(s, pos, ctx)
else:
return p_c_struct_or_union_definition(s, pos, ctx)
def p_visibility(s, prev_visibility):
pos = s.position()
visibility = prev_visibility
if s.sy == 'IDENT' and s.systring in ('extern', 'public', 'readonly'):
visibility = s.systring
if prev_visibility != 'private' and visibility != prev_visibility:
s.error("Conflicting visibility options '%s' and '%s'"
% (prev_visibility, visibility), fatal=False)
s.next()
return visibility
def p_c_modifiers(s):
if s.sy == 'IDENT' and s.systring in ('inline',):
modifier = s.systring
s.next()
return [modifier] + p_c_modifiers(s)
return []
def p_c_func_or_var_declaration(s, pos, ctx):
cmethod_flag = ctx.level in ('c_class', 'c_class_pxd')
modifiers = p_c_modifiers(s)
base_type = p_c_base_type(s, nonempty = 1, templates = ctx.templates)
declarator = p_c_declarator(s, ctx(modifiers=modifiers), cmethod_flag = cmethod_flag,
assignable = 1, nonempty = 1)
declarator.overridable = ctx.overridable
if s.sy == 'IDENT' and s.systring == 'const' and ctx.level == 'cpp_class':
s.next()
is_const_method = 1
else:
is_const_method = 0
if s.sy == '->':
# Special enough to give a better error message and keep going.
s.error(
"Return type annotation is not allowed in cdef/cpdef signatures. "
"Please define it before the function name, as in C signatures.",
fatal=False)
s.next()
p_test(s) # Keep going, but ignore result.
if s.sy == ':':
if ctx.level not in ('module', 'c_class', 'module_pxd', 'c_class_pxd', 'cpp_class') and not ctx.templates:
s.error("C function definition not allowed here")
doc, suite = p_suite_with_docstring(s, Ctx(level='function'))
result = Nodes.CFuncDefNode(pos,
visibility = ctx.visibility,
base_type = base_type,
declarator = declarator,
body = suite,
doc = doc,
modifiers = modifiers,
api = ctx.api,
overridable = ctx.overridable,
is_const_method = is_const_method)
else:
#if api:
# s.error("'api' not allowed with variable declaration")
if is_const_method:
declarator.is_const_method = is_const_method
declarators = [declarator]
while s.sy == ',':
s.next()
if s.sy == 'NEWLINE':
break
declarator = p_c_declarator(s, ctx, cmethod_flag = cmethod_flag,
assignable = 1, nonempty = 1)
declarators.append(declarator)
doc_line = s.start_line + 1
s.expect_newline("Syntax error in C variable declaration", ignore_semicolon=True)
if ctx.level in ('c_class', 'c_class_pxd') and s.start_line == doc_line:
doc = p_doc_string(s)
else:
doc = None
result = Nodes.CVarDefNode(pos,
visibility = ctx.visibility,
base_type = base_type,
declarators = declarators,
in_pxd = ctx.level in ('module_pxd', 'c_class_pxd'),
doc = doc,
api = ctx.api,
modifiers = modifiers,
overridable = ctx.overridable)
return result
def p_ctypedef_statement(s, ctx):
# s.sy == 'ctypedef'
pos = s.position()
s.next()
visibility = p_visibility(s, ctx.visibility)
api = p_api(s)
ctx = ctx(typedef_flag = 1, visibility = visibility)
if api:
ctx.api = 1
if s.sy == 'class':
return p_c_class_definition(s, pos, ctx)
elif s.sy == 'IDENT' and s.systring in struct_enum_union:
return p_struct_enum(s, pos, ctx)
elif s.sy == 'IDENT' and s.systring == 'fused':
return p_fused_definition(s, pos, ctx)
else:
base_type = p_c_base_type(s, nonempty = 1)
declarator = p_c_declarator(s, ctx, is_type = 1, nonempty = 1)
s.expect_newline("Syntax error in ctypedef statement", ignore_semicolon=True)
return Nodes.CTypeDefNode(
pos, base_type = base_type,
declarator = declarator,
visibility = visibility, api = api,
in_pxd = ctx.level == 'module_pxd')
def p_decorators(s):
decorators = []
while s.sy == '@':
pos = s.position()
s.next()
decstring = p_dotted_name(s, as_allowed=0)[2]
names = decstring.split('.')
decorator = ExprNodes.NameNode(pos, name=s.context.intern_ustring(names[0]))
for name in names[1:]:
decorator = ExprNodes.AttributeNode(
pos, attribute=s.context.intern_ustring(name), obj=decorator)
if s.sy == '(':
decorator = p_call(s, decorator)
decorators.append(Nodes.DecoratorNode(pos, decorator=decorator))
s.expect_newline("Expected a newline after decorator")
return decorators
def _reject_cdef_modifier_in_py(s, name):
"""Step over incorrectly placed cdef modifiers (@see _CDEF_MODIFIERS) to provide a good error message for them.
"""
if s.sy == 'IDENT' and name in _CDEF_MODIFIERS:
# Special enough to provide a good error message.
s.error("Cannot use cdef modifier '%s' in Python function signature. Use a decorator instead." % name, fatal=False)
return p_ident(s) # Keep going, in case there are other errors.
return name
def p_def_statement(s, decorators=None, is_async_def=False):
# s.sy == 'def'
pos = s.position()
# PEP 492 switches the async/await keywords on in "async def" functions
if is_async_def:
s.enter_async()
s.next()
name = _reject_cdef_modifier_in_py(s, p_ident(s))
s.expect(
'(',
"Expected '(', found '%s'. Did you use cdef syntax in a Python declaration? "
"Use decorators and Python type annotations instead." % (
s.systring if s.sy == 'IDENT' else s.sy))
args, star_arg, starstar_arg = p_varargslist(s, terminator=')')
s.expect(')')
_reject_cdef_modifier_in_py(s, s.systring)
return_type_annotation = None
if s.sy == '->':
s.next()
return_type_annotation = p_test(s)
_reject_cdef_modifier_in_py(s, s.systring)
doc, body = p_suite_with_docstring(s, Ctx(level='function'))
if is_async_def:
s.exit_async()
return Nodes.DefNode(
pos, name=name, args=args, star_arg=star_arg, starstar_arg=starstar_arg,
doc=doc, body=body, decorators=decorators, is_async_def=is_async_def,
return_type_annotation=return_type_annotation)
def p_varargslist(s, terminator=')', annotated=1):
args = p_c_arg_list(s, in_pyfunc = 1, nonempty_declarators = 1,
annotated = annotated)
star_arg = None
starstar_arg = None
if s.sy == '*':
s.next()
if s.sy == 'IDENT':
star_arg = p_py_arg_decl(s, annotated=annotated)
if s.sy == ',':
s.next()
args.extend(p_c_arg_list(s, in_pyfunc = 1,
nonempty_declarators = 1, kw_only = 1, annotated = annotated))
elif s.sy != terminator:
s.error("Syntax error in Python function argument list")
if s.sy == '**':
s.next()
starstar_arg = p_py_arg_decl(s, annotated=annotated)
if s.sy == ',':
s.next()
return (args, star_arg, starstar_arg)
def p_py_arg_decl(s, annotated = 1):
pos = s.position()
name = p_ident(s)
annotation = None
if annotated and s.sy == ':':
s.next()
annotation = p_test(s)
return Nodes.PyArgDeclNode(pos, name = name, annotation = annotation)
def p_class_statement(s, decorators):
# s.sy == 'class'
pos = s.position()
s.next()
class_name = EncodedString(p_ident(s))
class_name.encoding = s.source_encoding # FIXME: why is this needed?
arg_tuple = None
keyword_dict = None
if s.sy == '(':
positional_args, keyword_args = p_call_parse_args(s, allow_genexp=False)
arg_tuple, keyword_dict = p_call_build_packed_args(pos, positional_args, keyword_args)
if arg_tuple is None:
# XXX: empty arg_tuple
arg_tuple = ExprNodes.TupleNode(pos, args=[])
doc, body = p_suite_with_docstring(s, Ctx(level='class'))
return Nodes.PyClassDefNode(
pos, name=class_name,
bases=arg_tuple,
keyword_args=keyword_dict,
doc=doc, body=body, decorators=decorators,
force_py3_semantics=s.context.language_level >= 3)
def p_c_class_definition(s, pos, ctx):
# s.sy == 'class'
s.next()
module_path = []
class_name = p_ident(s)
while s.sy == '.':
s.next()
module_path.append(class_name)
class_name = p_ident(s)
if module_path and ctx.visibility != 'extern':
error(pos, "Qualified class name only allowed for 'extern' C class")
if module_path and s.sy == 'IDENT' and s.systring == 'as':
s.next()
as_name = p_ident(s)
else:
as_name = class_name
objstruct_name = None
typeobj_name = None
bases = None
check_size = None
if s.sy == '(':
positional_args, keyword_args = p_call_parse_args(s, allow_genexp=False)
if keyword_args:
s.error("C classes cannot take keyword bases.")
bases, _ = p_call_build_packed_args(pos, positional_args, keyword_args)
if bases is None:
bases = ExprNodes.TupleNode(pos, args=[])
if s.sy == '[':
if ctx.visibility not in ('public', 'extern') and not ctx.api:
error(s.position(), "Name options only allowed for 'public', 'api', or 'extern' C class")
objstruct_name, typeobj_name, check_size = p_c_class_options(s)
if s.sy == ':':
if ctx.level == 'module_pxd':
body_level = 'c_class_pxd'
else:
body_level = 'c_class'
doc, body = p_suite_with_docstring(s, Ctx(level=body_level))
else:
s.expect_newline("Syntax error in C class definition")
doc = None
body = None
if ctx.visibility == 'extern':
if not module_path:
error(pos, "Module name required for 'extern' C class")
if typeobj_name:
error(pos, "Type object name specification not allowed for 'extern' C class")
elif ctx.visibility == 'public':
if not objstruct_name:
error(pos, "Object struct name specification required for 'public' C class")
if not typeobj_name:
error(pos, "Type object name specification required for 'public' C class")
elif ctx.visibility == 'private':
if ctx.api:
if not objstruct_name:
error(pos, "Object struct name specification required for 'api' C class")
if not typeobj_name:
error(pos, "Type object name specification required for 'api' C class")
else:
error(pos, "Invalid class visibility '%s'" % ctx.visibility)
return Nodes.CClassDefNode(pos,
visibility = ctx.visibility,
typedef_flag = ctx.typedef_flag,
api = ctx.api,
module_name = ".".join(module_path),
class_name = class_name,
as_name = as_name,
bases = bases,
objstruct_name = objstruct_name,
typeobj_name = typeobj_name,
check_size = check_size,
in_pxd = ctx.level == 'module_pxd',
doc = doc,
body = body)
def p_c_class_options(s):
objstruct_name = None
typeobj_name = None
check_size = None
s.expect('[')
while 1:
if s.sy != 'IDENT':
break
if s.systring == 'object':
s.next()
objstruct_name = p_ident(s)
elif s.systring == 'type':
s.next()
typeobj_name = p_ident(s)
elif s.systring == 'check_size':
s.next()
check_size = p_ident(s)
if check_size not in ('ignore', 'warn', 'error'):
s.error("Expected one of ignore, warn or error, found %r" % check_size)
if s.sy != ',':
break
s.next()
s.expect(']', "Expected 'object', 'type' or 'check_size'")
return objstruct_name, typeobj_name, check_size
def p_property_decl(s):
pos = s.position()
s.next() # 'property'
name = p_ident(s)
doc, body = p_suite_with_docstring(
s, Ctx(level='property'), with_doc_only=True)
return Nodes.PropertyNode(pos, name=name, doc=doc, body=body)
def p_ignorable_statement(s):
"""
Parses any kind of ignorable statement that is allowed in .pxd files.
"""
if s.sy == 'BEGIN_STRING':
pos = s.position()
string_node = p_atom(s)
s.expect_newline("Syntax error in string", ignore_semicolon=True)
return Nodes.ExprStatNode(pos, expr=string_node)
return None
def p_doc_string(s):
if s.sy == 'BEGIN_STRING':
pos = s.position()
kind, bytes_result, unicode_result = p_cat_string_literal(s)
s.expect_newline("Syntax error in doc string", ignore_semicolon=True)
if kind in ('u', ''):
return unicode_result
warning(pos, "Python 3 requires docstrings to be unicode strings")
return bytes_result
else:
return None
def _extract_docstring(node):
"""
Extract a docstring from a statement or from the first statement
in a list. Remove the statement if found. Return a tuple
(plain-docstring or None, node).
"""
doc_node = None
if node is None:
pass
elif isinstance(node, Nodes.ExprStatNode):
if node.expr.is_string_literal:
doc_node = node.expr
node = Nodes.StatListNode(node.pos, stats=[])
elif isinstance(node, Nodes.StatListNode) and node.stats:
stats = node.stats
if isinstance(stats[0], Nodes.ExprStatNode):
if stats[0].expr.is_string_literal:
doc_node = stats[0].expr
del stats[0]
if doc_node is None:
doc = None
elif isinstance(doc_node, ExprNodes.BytesNode):
warning(node.pos,
"Python 3 requires docstrings to be unicode strings")
doc = doc_node.value
elif isinstance(doc_node, ExprNodes.StringNode):
doc = doc_node.unicode_value
if doc is None:
doc = doc_node.value
else:
doc = doc_node.value
return doc, node
def p_code(s, level=None, ctx=Ctx):
body = p_statement_list(s, ctx(level = level), first_statement = 1)
if s.sy != 'EOF':
s.error("Syntax error in statement [%s,%s]" % (
repr(s.sy), repr(s.systring)))
return body
_match_compiler_directive_comment = cython.declare(object, re.compile(
r"^#\s*cython\s*:\s*((\w|[.])+\s*=.*)$").match)
def p_compiler_directive_comments(s):
result = {}
while s.sy == 'commentline':
pos = s.position()
m = _match_compiler_directive_comment(s.systring)
if m:
directives_string = m.group(1).strip()
try:
new_directives = Options.parse_directive_list(directives_string, ignore_unknown=True)
except ValueError as e:
s.error(e.args[0], fatal=False)
s.next()
continue
for name in new_directives:
if name not in result:
pass
elif new_directives[name] == result[name]:
warning(pos, "Duplicate directive found: %s" % (name,))
else:
s.error("Conflicting settings found for top-level directive %s: %r and %r" % (
name, result[name], new_directives[name]), pos=pos)
if 'language_level' in new_directives:
# Make sure we apply the language level already to the first token that follows the comments.
s.context.set_language_level(new_directives['language_level'])
result.update(new_directives)
s.next()
return result
def p_module(s, pxd, full_module_name, ctx=Ctx):
pos = s.position()
directive_comments = p_compiler_directive_comments(s)
s.parse_comments = False
if s.context.language_level is None:
s.context.set_language_level(2)
if pos[0].filename:
import warnings
warnings.warn(
"Cython directive 'language_level' not set, using 2 for now (Py2). "
"This will change in a later release! File: %s" % pos[0].filename,
FutureWarning,
stacklevel=1 if cython.compiled else 2,
)
doc = p_doc_string(s)
if pxd:
level = 'module_pxd'
else:
level = 'module'
body = p_statement_list(s, ctx(level=level), first_statement = 1)
if s.sy != 'EOF':
s.error("Syntax error in statement [%s,%s]" % (
repr(s.sy), repr(s.systring)))
return ModuleNode(pos, doc = doc, body = body,
full_module_name = full_module_name,
directive_comments = directive_comments)
def p_template_definition(s):
name = p_ident(s)
if s.sy == '=':
s.expect('=')
s.expect('*')
required = False
else:
required = True
return name, required
def p_cpp_class_definition(s, pos, ctx):
# s.sy == 'cppclass'
s.next()
module_path = []
class_name = p_ident(s)
cname = p_opt_cname(s)
if cname is None and ctx.namespace is not None:
cname = ctx.namespace + "::" + class_name
if s.sy == '.':
error(pos, "Qualified class name not allowed C++ class")
if s.sy == '[':
s.next()
templates = [p_template_definition(s)]
while s.sy == ',':
s.next()
templates.append(p_template_definition(s))
s.expect(']')
template_names = [name for name, required in templates]
else:
templates = None
template_names = None
if s.sy == '(':
s.next()
base_classes = [p_c_base_type(s, templates = template_names)]
while s.sy == ',':
s.next()
base_classes.append(p_c_base_type(s, templates = template_names))
s.expect(')')
else:
base_classes = []
if s.sy == '[':
error(s.position(), "Name options not allowed for C++ class")
nogil = p_nogil(s)
if s.sy == ':':
s.next()
s.expect('NEWLINE')
s.expect_indent()
attributes = []
body_ctx = Ctx(visibility = ctx.visibility, level='cpp_class', nogil=nogil or ctx.nogil)
body_ctx.templates = template_names
while s.sy != 'DEDENT':
if s.sy != 'pass':
attributes.append(p_cpp_class_attribute(s, body_ctx))
else:
s.next()
s.expect_newline("Expected a newline")
s.expect_dedent()
else:
attributes = None
s.expect_newline("Syntax error in C++ class definition")
return Nodes.CppClassNode(pos,
name = class_name,
cname = cname,
base_classes = base_classes,
visibility = ctx.visibility,
in_pxd = ctx.level == 'module_pxd',
attributes = attributes,
templates = templates)
def p_cpp_class_attribute(s, ctx):
decorators = None
if s.sy == '@':
decorators = p_decorators(s)
if s.systring == 'cppclass':
return p_cpp_class_definition(s, s.position(), ctx)
elif s.systring == 'ctypedef':
return p_ctypedef_statement(s, ctx)
elif s.sy == 'IDENT' and s.systring in struct_enum_union:
if s.systring != 'enum':
return p_cpp_class_definition(s, s.position(), ctx)
else:
return p_struct_enum(s, s.position(), ctx)
else:
node = p_c_func_or_var_declaration(s, s.position(), ctx)
if decorators is not None:
tup = Nodes.CFuncDefNode, Nodes.CVarDefNode, Nodes.CClassDefNode
if ctx.allow_struct_enum_decorator:
tup += Nodes.CStructOrUnionDefNode, Nodes.CEnumDefNode
if not isinstance(node, tup):
s.error("Decorators can only be followed by functions or classes")
node.decorators = decorators
return node
#----------------------------------------------
#
# Debugging
#
#----------------------------------------------
def print_parse_tree(f, node, level, key = None):
ind = " " * level
if node:
f.write(ind)
if key:
f.write("%s: " % key)
t = type(node)
if t is tuple:
f.write("(%s @ %s\n" % (node[0], node[1]))
for i in range(2, len(node)):
print_parse_tree(f, node[i], level+1)
f.write("%s)\n" % ind)
return
elif isinstance(node, Nodes.Node):
try:
tag = node.tag
except AttributeError:
tag = node.__class__.__name__
f.write("%s @ %s\n" % (tag, node.pos))
for name, value in node.__dict__.items():
if name != 'tag' and name != 'pos':
print_parse_tree(f, value, level+1, name)
return
elif t is list:
f.write("[\n")
for i in range(len(node)):
print_parse_tree(f, node[i], level+1)
f.write("%s]\n" % ind)
return
f.write("%s%s\n" % (ind, node))