161 lines
5.2 KiB
Python
161 lines
5.2 KiB
Python
|
#
|
||
|
# The Python Imaging Library.
|
||
|
# $Id$
|
||
|
#
|
||
|
# global image statistics
|
||
|
#
|
||
|
# History:
|
||
|
# 1996-04-05 fl Created
|
||
|
# 1997-05-21 fl Added mask; added rms, var, stddev attributes
|
||
|
# 1997-08-05 fl Added median
|
||
|
# 1998-07-05 hk Fixed integer overflow error
|
||
|
#
|
||
|
# Notes:
|
||
|
# This class shows how to implement delayed evaluation of attributes.
|
||
|
# To get a certain value, simply access the corresponding attribute.
|
||
|
# The __getattr__ dispatcher takes care of the rest.
|
||
|
#
|
||
|
# Copyright (c) Secret Labs AB 1997.
|
||
|
# Copyright (c) Fredrik Lundh 1996-97.
|
||
|
#
|
||
|
# See the README file for information on usage and redistribution.
|
||
|
#
|
||
|
from __future__ import annotations
|
||
|
|
||
|
import math
|
||
|
from functools import cached_property
|
||
|
|
||
|
from . import Image
|
||
|
|
||
|
|
||
|
class Stat:
|
||
|
def __init__(
|
||
|
self, image_or_list: Image.Image | list[int], mask: Image.Image | None = None
|
||
|
) -> None:
|
||
|
"""
|
||
|
Calculate statistics for the given image. If a mask is included,
|
||
|
only the regions covered by that mask are included in the
|
||
|
statistics. You can also pass in a previously calculated histogram.
|
||
|
|
||
|
:param image: A PIL image, or a precalculated histogram.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
For a PIL image, calculations rely on the
|
||
|
:py:meth:`~PIL.Image.Image.histogram` method. The pixel counts are
|
||
|
grouped into 256 bins, even if the image has more than 8 bits per
|
||
|
channel. So ``I`` and ``F`` mode images have a maximum ``mean``,
|
||
|
``median`` and ``rms`` of 255, and cannot have an ``extrema`` maximum
|
||
|
of more than 255.
|
||
|
|
||
|
:param mask: An optional mask.
|
||
|
"""
|
||
|
if isinstance(image_or_list, Image.Image):
|
||
|
self.h = image_or_list.histogram(mask)
|
||
|
elif isinstance(image_or_list, list):
|
||
|
self.h = image_or_list
|
||
|
else:
|
||
|
msg = "first argument must be image or list" # type: ignore[unreachable]
|
||
|
raise TypeError(msg)
|
||
|
self.bands = list(range(len(self.h) // 256))
|
||
|
|
||
|
@cached_property
|
||
|
def extrema(self) -> list[tuple[int, int]]:
|
||
|
"""
|
||
|
Min/max values for each band in the image.
|
||
|
|
||
|
.. note::
|
||
|
This relies on the :py:meth:`~PIL.Image.Image.histogram` method, and
|
||
|
simply returns the low and high bins used. This is correct for
|
||
|
images with 8 bits per channel, but fails for other modes such as
|
||
|
``I`` or ``F``. Instead, use :py:meth:`~PIL.Image.Image.getextrema` to
|
||
|
return per-band extrema for the image. This is more correct and
|
||
|
efficient because, for non-8-bit modes, the histogram method uses
|
||
|
:py:meth:`~PIL.Image.Image.getextrema` to determine the bins used.
|
||
|
"""
|
||
|
|
||
|
def minmax(histogram: list[int]) -> tuple[int, int]:
|
||
|
res_min, res_max = 255, 0
|
||
|
for i in range(256):
|
||
|
if histogram[i]:
|
||
|
res_min = i
|
||
|
break
|
||
|
for i in range(255, -1, -1):
|
||
|
if histogram[i]:
|
||
|
res_max = i
|
||
|
break
|
||
|
return res_min, res_max
|
||
|
|
||
|
return [minmax(self.h[i:]) for i in range(0, len(self.h), 256)]
|
||
|
|
||
|
@cached_property
|
||
|
def count(self) -> list[int]:
|
||
|
"""Total number of pixels for each band in the image."""
|
||
|
return [sum(self.h[i : i + 256]) for i in range(0, len(self.h), 256)]
|
||
|
|
||
|
@cached_property
|
||
|
def sum(self) -> list[float]:
|
||
|
"""Sum of all pixels for each band in the image."""
|
||
|
|
||
|
v = []
|
||
|
for i in range(0, len(self.h), 256):
|
||
|
layer_sum = 0.0
|
||
|
for j in range(256):
|
||
|
layer_sum += j * self.h[i + j]
|
||
|
v.append(layer_sum)
|
||
|
return v
|
||
|
|
||
|
@cached_property
|
||
|
def sum2(self) -> list[float]:
|
||
|
"""Squared sum of all pixels for each band in the image."""
|
||
|
|
||
|
v = []
|
||
|
for i in range(0, len(self.h), 256):
|
||
|
sum2 = 0.0
|
||
|
for j in range(256):
|
||
|
sum2 += (j**2) * float(self.h[i + j])
|
||
|
v.append(sum2)
|
||
|
return v
|
||
|
|
||
|
@cached_property
|
||
|
def mean(self) -> list[float]:
|
||
|
"""Average (arithmetic mean) pixel level for each band in the image."""
|
||
|
return [self.sum[i] / self.count[i] for i in self.bands]
|
||
|
|
||
|
@cached_property
|
||
|
def median(self) -> list[int]:
|
||
|
"""Median pixel level for each band in the image."""
|
||
|
|
||
|
v = []
|
||
|
for i in self.bands:
|
||
|
s = 0
|
||
|
half = self.count[i] // 2
|
||
|
b = i * 256
|
||
|
for j in range(256):
|
||
|
s = s + self.h[b + j]
|
||
|
if s > half:
|
||
|
break
|
||
|
v.append(j)
|
||
|
return v
|
||
|
|
||
|
@cached_property
|
||
|
def rms(self) -> list[float]:
|
||
|
"""RMS (root-mean-square) for each band in the image."""
|
||
|
return [math.sqrt(self.sum2[i] / self.count[i]) for i in self.bands]
|
||
|
|
||
|
@cached_property
|
||
|
def var(self) -> list[float]:
|
||
|
"""Variance for each band in the image."""
|
||
|
return [
|
||
|
(self.sum2[i] - (self.sum[i] ** 2.0) / self.count[i]) / self.count[i]
|
||
|
for i in self.bands
|
||
|
]
|
||
|
|
||
|
@cached_property
|
||
|
def stddev(self) -> list[float]:
|
||
|
"""Standard deviation for each band in the image."""
|
||
|
return [math.sqrt(self.var[i]) for i in self.bands]
|
||
|
|
||
|
|
||
|
Global = Stat # compatibility
|