729 lines
24 KiB
Python
729 lines
24 KiB
Python
|
#
|
||
|
# The Python Imaging Library.
|
||
|
# $Id$
|
||
|
#
|
||
|
# standard image operations
|
||
|
#
|
||
|
# History:
|
||
|
# 2001-10-20 fl Created
|
||
|
# 2001-10-23 fl Added autocontrast operator
|
||
|
# 2001-12-18 fl Added Kevin's fit operator
|
||
|
# 2004-03-14 fl Fixed potential division by zero in equalize
|
||
|
# 2005-05-05 fl Fixed equalize for low number of values
|
||
|
#
|
||
|
# Copyright (c) 2001-2004 by Secret Labs AB
|
||
|
# Copyright (c) 2001-2004 by Fredrik Lundh
|
||
|
#
|
||
|
# See the README file for information on usage and redistribution.
|
||
|
#
|
||
|
from __future__ import annotations
|
||
|
|
||
|
import functools
|
||
|
import operator
|
||
|
import re
|
||
|
from typing import Protocol, Sequence, cast
|
||
|
|
||
|
from . import ExifTags, Image, ImagePalette
|
||
|
|
||
|
#
|
||
|
# helpers
|
||
|
|
||
|
|
||
|
def _border(border: int | tuple[int, ...]) -> tuple[int, int, int, int]:
|
||
|
if isinstance(border, tuple):
|
||
|
if len(border) == 2:
|
||
|
left, top = right, bottom = border
|
||
|
elif len(border) == 4:
|
||
|
left, top, right, bottom = border
|
||
|
else:
|
||
|
left = top = right = bottom = border
|
||
|
return left, top, right, bottom
|
||
|
|
||
|
|
||
|
def _color(color: str | int | tuple[int, ...], mode: str) -> int | tuple[int, ...]:
|
||
|
if isinstance(color, str):
|
||
|
from . import ImageColor
|
||
|
|
||
|
color = ImageColor.getcolor(color, mode)
|
||
|
return color
|
||
|
|
||
|
|
||
|
def _lut(image: Image.Image, lut: list[int]) -> Image.Image:
|
||
|
if image.mode == "P":
|
||
|
# FIXME: apply to lookup table, not image data
|
||
|
msg = "mode P support coming soon"
|
||
|
raise NotImplementedError(msg)
|
||
|
elif image.mode in ("L", "RGB"):
|
||
|
if image.mode == "RGB" and len(lut) == 256:
|
||
|
lut = lut + lut + lut
|
||
|
return image.point(lut)
|
||
|
else:
|
||
|
msg = f"not supported for mode {image.mode}"
|
||
|
raise OSError(msg)
|
||
|
|
||
|
|
||
|
#
|
||
|
# actions
|
||
|
|
||
|
|
||
|
def autocontrast(
|
||
|
image: Image.Image,
|
||
|
cutoff: float | tuple[float, float] = 0,
|
||
|
ignore: int | Sequence[int] | None = None,
|
||
|
mask: Image.Image | None = None,
|
||
|
preserve_tone: bool = False,
|
||
|
) -> Image.Image:
|
||
|
"""
|
||
|
Maximize (normalize) image contrast. This function calculates a
|
||
|
histogram of the input image (or mask region), removes ``cutoff`` percent of the
|
||
|
lightest and darkest pixels from the histogram, and remaps the image
|
||
|
so that the darkest pixel becomes black (0), and the lightest
|
||
|
becomes white (255).
|
||
|
|
||
|
:param image: The image to process.
|
||
|
:param cutoff: The percent to cut off from the histogram on the low and
|
||
|
high ends. Either a tuple of (low, high), or a single
|
||
|
number for both.
|
||
|
:param ignore: The background pixel value (use None for no background).
|
||
|
:param mask: Histogram used in contrast operation is computed using pixels
|
||
|
within the mask. If no mask is given the entire image is used
|
||
|
for histogram computation.
|
||
|
:param preserve_tone: Preserve image tone in Photoshop-like style autocontrast.
|
||
|
|
||
|
.. versionadded:: 8.2.0
|
||
|
|
||
|
:return: An image.
|
||
|
"""
|
||
|
if preserve_tone:
|
||
|
histogram = image.convert("L").histogram(mask)
|
||
|
else:
|
||
|
histogram = image.histogram(mask)
|
||
|
|
||
|
lut = []
|
||
|
for layer in range(0, len(histogram), 256):
|
||
|
h = histogram[layer : layer + 256]
|
||
|
if ignore is not None:
|
||
|
# get rid of outliers
|
||
|
if isinstance(ignore, int):
|
||
|
h[ignore] = 0
|
||
|
else:
|
||
|
for ix in ignore:
|
||
|
h[ix] = 0
|
||
|
if cutoff:
|
||
|
# cut off pixels from both ends of the histogram
|
||
|
if not isinstance(cutoff, tuple):
|
||
|
cutoff = (cutoff, cutoff)
|
||
|
# get number of pixels
|
||
|
n = 0
|
||
|
for ix in range(256):
|
||
|
n = n + h[ix]
|
||
|
# remove cutoff% pixels from the low end
|
||
|
cut = int(n * cutoff[0] // 100)
|
||
|
for lo in range(256):
|
||
|
if cut > h[lo]:
|
||
|
cut = cut - h[lo]
|
||
|
h[lo] = 0
|
||
|
else:
|
||
|
h[lo] -= cut
|
||
|
cut = 0
|
||
|
if cut <= 0:
|
||
|
break
|
||
|
# remove cutoff% samples from the high end
|
||
|
cut = int(n * cutoff[1] // 100)
|
||
|
for hi in range(255, -1, -1):
|
||
|
if cut > h[hi]:
|
||
|
cut = cut - h[hi]
|
||
|
h[hi] = 0
|
||
|
else:
|
||
|
h[hi] -= cut
|
||
|
cut = 0
|
||
|
if cut <= 0:
|
||
|
break
|
||
|
# find lowest/highest samples after preprocessing
|
||
|
for lo in range(256):
|
||
|
if h[lo]:
|
||
|
break
|
||
|
for hi in range(255, -1, -1):
|
||
|
if h[hi]:
|
||
|
break
|
||
|
if hi <= lo:
|
||
|
# don't bother
|
||
|
lut.extend(list(range(256)))
|
||
|
else:
|
||
|
scale = 255.0 / (hi - lo)
|
||
|
offset = -lo * scale
|
||
|
for ix in range(256):
|
||
|
ix = int(ix * scale + offset)
|
||
|
if ix < 0:
|
||
|
ix = 0
|
||
|
elif ix > 255:
|
||
|
ix = 255
|
||
|
lut.append(ix)
|
||
|
return _lut(image, lut)
|
||
|
|
||
|
|
||
|
def colorize(
|
||
|
image: Image.Image,
|
||
|
black: str | tuple[int, ...],
|
||
|
white: str | tuple[int, ...],
|
||
|
mid: str | int | tuple[int, ...] | None = None,
|
||
|
blackpoint: int = 0,
|
||
|
whitepoint: int = 255,
|
||
|
midpoint: int = 127,
|
||
|
) -> Image.Image:
|
||
|
"""
|
||
|
Colorize grayscale image.
|
||
|
This function calculates a color wedge which maps all black pixels in
|
||
|
the source image to the first color and all white pixels to the
|
||
|
second color. If ``mid`` is specified, it uses three-color mapping.
|
||
|
The ``black`` and ``white`` arguments should be RGB tuples or color names;
|
||
|
optionally you can use three-color mapping by also specifying ``mid``.
|
||
|
Mapping positions for any of the colors can be specified
|
||
|
(e.g. ``blackpoint``), where these parameters are the integer
|
||
|
value corresponding to where the corresponding color should be mapped.
|
||
|
These parameters must have logical order, such that
|
||
|
``blackpoint <= midpoint <= whitepoint`` (if ``mid`` is specified).
|
||
|
|
||
|
:param image: The image to colorize.
|
||
|
:param black: The color to use for black input pixels.
|
||
|
:param white: The color to use for white input pixels.
|
||
|
:param mid: The color to use for midtone input pixels.
|
||
|
:param blackpoint: an int value [0, 255] for the black mapping.
|
||
|
:param whitepoint: an int value [0, 255] for the white mapping.
|
||
|
:param midpoint: an int value [0, 255] for the midtone mapping.
|
||
|
:return: An image.
|
||
|
"""
|
||
|
|
||
|
# Initial asserts
|
||
|
assert image.mode == "L"
|
||
|
if mid is None:
|
||
|
assert 0 <= blackpoint <= whitepoint <= 255
|
||
|
else:
|
||
|
assert 0 <= blackpoint <= midpoint <= whitepoint <= 255
|
||
|
|
||
|
# Define colors from arguments
|
||
|
rgb_black = cast(Sequence[int], _color(black, "RGB"))
|
||
|
rgb_white = cast(Sequence[int], _color(white, "RGB"))
|
||
|
rgb_mid = cast(Sequence[int], _color(mid, "RGB")) if mid is not None else None
|
||
|
|
||
|
# Empty lists for the mapping
|
||
|
red = []
|
||
|
green = []
|
||
|
blue = []
|
||
|
|
||
|
# Create the low-end values
|
||
|
for i in range(0, blackpoint):
|
||
|
red.append(rgb_black[0])
|
||
|
green.append(rgb_black[1])
|
||
|
blue.append(rgb_black[2])
|
||
|
|
||
|
# Create the mapping (2-color)
|
||
|
if rgb_mid is None:
|
||
|
range_map = range(0, whitepoint - blackpoint)
|
||
|
|
||
|
for i in range_map:
|
||
|
red.append(
|
||
|
rgb_black[0] + i * (rgb_white[0] - rgb_black[0]) // len(range_map)
|
||
|
)
|
||
|
green.append(
|
||
|
rgb_black[1] + i * (rgb_white[1] - rgb_black[1]) // len(range_map)
|
||
|
)
|
||
|
blue.append(
|
||
|
rgb_black[2] + i * (rgb_white[2] - rgb_black[2]) // len(range_map)
|
||
|
)
|
||
|
|
||
|
# Create the mapping (3-color)
|
||
|
else:
|
||
|
range_map1 = range(0, midpoint - blackpoint)
|
||
|
range_map2 = range(0, whitepoint - midpoint)
|
||
|
|
||
|
for i in range_map1:
|
||
|
red.append(
|
||
|
rgb_black[0] + i * (rgb_mid[0] - rgb_black[0]) // len(range_map1)
|
||
|
)
|
||
|
green.append(
|
||
|
rgb_black[1] + i * (rgb_mid[1] - rgb_black[1]) // len(range_map1)
|
||
|
)
|
||
|
blue.append(
|
||
|
rgb_black[2] + i * (rgb_mid[2] - rgb_black[2]) // len(range_map1)
|
||
|
)
|
||
|
for i in range_map2:
|
||
|
red.append(rgb_mid[0] + i * (rgb_white[0] - rgb_mid[0]) // len(range_map2))
|
||
|
green.append(
|
||
|
rgb_mid[1] + i * (rgb_white[1] - rgb_mid[1]) // len(range_map2)
|
||
|
)
|
||
|
blue.append(rgb_mid[2] + i * (rgb_white[2] - rgb_mid[2]) // len(range_map2))
|
||
|
|
||
|
# Create the high-end values
|
||
|
for i in range(0, 256 - whitepoint):
|
||
|
red.append(rgb_white[0])
|
||
|
green.append(rgb_white[1])
|
||
|
blue.append(rgb_white[2])
|
||
|
|
||
|
# Return converted image
|
||
|
image = image.convert("RGB")
|
||
|
return _lut(image, red + green + blue)
|
||
|
|
||
|
|
||
|
def contain(
|
||
|
image: Image.Image, size: tuple[int, int], method: int = Image.Resampling.BICUBIC
|
||
|
) -> Image.Image:
|
||
|
"""
|
||
|
Returns a resized version of the image, set to the maximum width and height
|
||
|
within the requested size, while maintaining the original aspect ratio.
|
||
|
|
||
|
:param image: The image to resize.
|
||
|
:param size: The requested output size in pixels, given as a
|
||
|
(width, height) tuple.
|
||
|
:param method: Resampling method to use. Default is
|
||
|
:py:attr:`~PIL.Image.Resampling.BICUBIC`.
|
||
|
See :ref:`concept-filters`.
|
||
|
:return: An image.
|
||
|
"""
|
||
|
|
||
|
im_ratio = image.width / image.height
|
||
|
dest_ratio = size[0] / size[1]
|
||
|
|
||
|
if im_ratio != dest_ratio:
|
||
|
if im_ratio > dest_ratio:
|
||
|
new_height = round(image.height / image.width * size[0])
|
||
|
if new_height != size[1]:
|
||
|
size = (size[0], new_height)
|
||
|
else:
|
||
|
new_width = round(image.width / image.height * size[1])
|
||
|
if new_width != size[0]:
|
||
|
size = (new_width, size[1])
|
||
|
return image.resize(size, resample=method)
|
||
|
|
||
|
|
||
|
def cover(
|
||
|
image: Image.Image, size: tuple[int, int], method: int = Image.Resampling.BICUBIC
|
||
|
) -> Image.Image:
|
||
|
"""
|
||
|
Returns a resized version of the image, so that the requested size is
|
||
|
covered, while maintaining the original aspect ratio.
|
||
|
|
||
|
:param image: The image to resize.
|
||
|
:param size: The requested output size in pixels, given as a
|
||
|
(width, height) tuple.
|
||
|
:param method: Resampling method to use. Default is
|
||
|
:py:attr:`~PIL.Image.Resampling.BICUBIC`.
|
||
|
See :ref:`concept-filters`.
|
||
|
:return: An image.
|
||
|
"""
|
||
|
|
||
|
im_ratio = image.width / image.height
|
||
|
dest_ratio = size[0] / size[1]
|
||
|
|
||
|
if im_ratio != dest_ratio:
|
||
|
if im_ratio < dest_ratio:
|
||
|
new_height = round(image.height / image.width * size[0])
|
||
|
if new_height != size[1]:
|
||
|
size = (size[0], new_height)
|
||
|
else:
|
||
|
new_width = round(image.width / image.height * size[1])
|
||
|
if new_width != size[0]:
|
||
|
size = (new_width, size[1])
|
||
|
return image.resize(size, resample=method)
|
||
|
|
||
|
|
||
|
def pad(
|
||
|
image: Image.Image,
|
||
|
size: tuple[int, int],
|
||
|
method: int = Image.Resampling.BICUBIC,
|
||
|
color: str | int | tuple[int, ...] | None = None,
|
||
|
centering: tuple[float, float] = (0.5, 0.5),
|
||
|
) -> Image.Image:
|
||
|
"""
|
||
|
Returns a resized and padded version of the image, expanded to fill the
|
||
|
requested aspect ratio and size.
|
||
|
|
||
|
:param image: The image to resize and crop.
|
||
|
:param size: The requested output size in pixels, given as a
|
||
|
(width, height) tuple.
|
||
|
:param method: Resampling method to use. Default is
|
||
|
:py:attr:`~PIL.Image.Resampling.BICUBIC`.
|
||
|
See :ref:`concept-filters`.
|
||
|
:param color: The background color of the padded image.
|
||
|
:param centering: Control the position of the original image within the
|
||
|
padded version.
|
||
|
|
||
|
(0.5, 0.5) will keep the image centered
|
||
|
(0, 0) will keep the image aligned to the top left
|
||
|
(1, 1) will keep the image aligned to the bottom
|
||
|
right
|
||
|
:return: An image.
|
||
|
"""
|
||
|
|
||
|
resized = contain(image, size, method)
|
||
|
if resized.size == size:
|
||
|
out = resized
|
||
|
else:
|
||
|
out = Image.new(image.mode, size, color)
|
||
|
if resized.palette:
|
||
|
out.putpalette(resized.getpalette())
|
||
|
if resized.width != size[0]:
|
||
|
x = round((size[0] - resized.width) * max(0, min(centering[0], 1)))
|
||
|
out.paste(resized, (x, 0))
|
||
|
else:
|
||
|
y = round((size[1] - resized.height) * max(0, min(centering[1], 1)))
|
||
|
out.paste(resized, (0, y))
|
||
|
return out
|
||
|
|
||
|
|
||
|
def crop(image: Image.Image, border: int = 0) -> Image.Image:
|
||
|
"""
|
||
|
Remove border from image. The same amount of pixels are removed
|
||
|
from all four sides. This function works on all image modes.
|
||
|
|
||
|
.. seealso:: :py:meth:`~PIL.Image.Image.crop`
|
||
|
|
||
|
:param image: The image to crop.
|
||
|
:param border: The number of pixels to remove.
|
||
|
:return: An image.
|
||
|
"""
|
||
|
left, top, right, bottom = _border(border)
|
||
|
return image.crop((left, top, image.size[0] - right, image.size[1] - bottom))
|
||
|
|
||
|
|
||
|
def scale(
|
||
|
image: Image.Image, factor: float, resample: int = Image.Resampling.BICUBIC
|
||
|
) -> Image.Image:
|
||
|
"""
|
||
|
Returns a rescaled image by a specific factor given in parameter.
|
||
|
A factor greater than 1 expands the image, between 0 and 1 contracts the
|
||
|
image.
|
||
|
|
||
|
:param image: The image to rescale.
|
||
|
:param factor: The expansion factor, as a float.
|
||
|
:param resample: Resampling method to use. Default is
|
||
|
:py:attr:`~PIL.Image.Resampling.BICUBIC`.
|
||
|
See :ref:`concept-filters`.
|
||
|
:returns: An :py:class:`~PIL.Image.Image` object.
|
||
|
"""
|
||
|
if factor == 1:
|
||
|
return image.copy()
|
||
|
elif factor <= 0:
|
||
|
msg = "the factor must be greater than 0"
|
||
|
raise ValueError(msg)
|
||
|
else:
|
||
|
size = (round(factor * image.width), round(factor * image.height))
|
||
|
return image.resize(size, resample)
|
||
|
|
||
|
|
||
|
class SupportsGetMesh(Protocol):
|
||
|
"""
|
||
|
An object that supports the ``getmesh`` method, taking an image as an
|
||
|
argument, and returning a list of tuples. Each tuple contains two tuples,
|
||
|
the source box as a tuple of 4 integers, and a tuple of 8 integers for the
|
||
|
final quadrilateral, in order of top left, bottom left, bottom right, top
|
||
|
right.
|
||
|
"""
|
||
|
|
||
|
def getmesh(
|
||
|
self, image: Image.Image
|
||
|
) -> list[
|
||
|
tuple[tuple[int, int, int, int], tuple[int, int, int, int, int, int, int, int]]
|
||
|
]: ...
|
||
|
|
||
|
|
||
|
def deform(
|
||
|
image: Image.Image,
|
||
|
deformer: SupportsGetMesh,
|
||
|
resample: int = Image.Resampling.BILINEAR,
|
||
|
) -> Image.Image:
|
||
|
"""
|
||
|
Deform the image.
|
||
|
|
||
|
:param image: The image to deform.
|
||
|
:param deformer: A deformer object. Any object that implements a
|
||
|
``getmesh`` method can be used.
|
||
|
:param resample: An optional resampling filter. Same values possible as
|
||
|
in the PIL.Image.transform function.
|
||
|
:return: An image.
|
||
|
"""
|
||
|
return image.transform(
|
||
|
image.size, Image.Transform.MESH, deformer.getmesh(image), resample
|
||
|
)
|
||
|
|
||
|
|
||
|
def equalize(image: Image.Image, mask: Image.Image | None = None) -> Image.Image:
|
||
|
"""
|
||
|
Equalize the image histogram. This function applies a non-linear
|
||
|
mapping to the input image, in order to create a uniform
|
||
|
distribution of grayscale values in the output image.
|
||
|
|
||
|
:param image: The image to equalize.
|
||
|
:param mask: An optional mask. If given, only the pixels selected by
|
||
|
the mask are included in the analysis.
|
||
|
:return: An image.
|
||
|
"""
|
||
|
if image.mode == "P":
|
||
|
image = image.convert("RGB")
|
||
|
h = image.histogram(mask)
|
||
|
lut = []
|
||
|
for b in range(0, len(h), 256):
|
||
|
histo = [_f for _f in h[b : b + 256] if _f]
|
||
|
if len(histo) <= 1:
|
||
|
lut.extend(list(range(256)))
|
||
|
else:
|
||
|
step = (functools.reduce(operator.add, histo) - histo[-1]) // 255
|
||
|
if not step:
|
||
|
lut.extend(list(range(256)))
|
||
|
else:
|
||
|
n = step // 2
|
||
|
for i in range(256):
|
||
|
lut.append(n // step)
|
||
|
n = n + h[i + b]
|
||
|
return _lut(image, lut)
|
||
|
|
||
|
|
||
|
def expand(
|
||
|
image: Image.Image,
|
||
|
border: int | tuple[int, ...] = 0,
|
||
|
fill: str | int | tuple[int, ...] = 0,
|
||
|
) -> Image.Image:
|
||
|
"""
|
||
|
Add border to the image
|
||
|
|
||
|
:param image: The image to expand.
|
||
|
:param border: Border width, in pixels.
|
||
|
:param fill: Pixel fill value (a color value). Default is 0 (black).
|
||
|
:return: An image.
|
||
|
"""
|
||
|
left, top, right, bottom = _border(border)
|
||
|
width = left + image.size[0] + right
|
||
|
height = top + image.size[1] + bottom
|
||
|
color = _color(fill, image.mode)
|
||
|
if image.palette:
|
||
|
palette = ImagePalette.ImagePalette(palette=image.getpalette())
|
||
|
if isinstance(color, tuple) and (len(color) == 3 or len(color) == 4):
|
||
|
color = palette.getcolor(color)
|
||
|
else:
|
||
|
palette = None
|
||
|
out = Image.new(image.mode, (width, height), color)
|
||
|
if palette:
|
||
|
out.putpalette(palette.palette)
|
||
|
out.paste(image, (left, top))
|
||
|
return out
|
||
|
|
||
|
|
||
|
def fit(
|
||
|
image: Image.Image,
|
||
|
size: tuple[int, int],
|
||
|
method: int = Image.Resampling.BICUBIC,
|
||
|
bleed: float = 0.0,
|
||
|
centering: tuple[float, float] = (0.5, 0.5),
|
||
|
) -> Image.Image:
|
||
|
"""
|
||
|
Returns a resized and cropped version of the image, cropped to the
|
||
|
requested aspect ratio and size.
|
||
|
|
||
|
This function was contributed by Kevin Cazabon.
|
||
|
|
||
|
:param image: The image to resize and crop.
|
||
|
:param size: The requested output size in pixels, given as a
|
||
|
(width, height) tuple.
|
||
|
:param method: Resampling method to use. Default is
|
||
|
:py:attr:`~PIL.Image.Resampling.BICUBIC`.
|
||
|
See :ref:`concept-filters`.
|
||
|
:param bleed: Remove a border around the outside of the image from all
|
||
|
four edges. The value is a decimal percentage (use 0.01 for
|
||
|
one percent). The default value is 0 (no border).
|
||
|
Cannot be greater than or equal to 0.5.
|
||
|
:param centering: Control the cropping position. Use (0.5, 0.5) for
|
||
|
center cropping (e.g. if cropping the width, take 50% off
|
||
|
of the left side, and therefore 50% off the right side).
|
||
|
(0.0, 0.0) will crop from the top left corner (i.e. if
|
||
|
cropping the width, take all of the crop off of the right
|
||
|
side, and if cropping the height, take all of it off the
|
||
|
bottom). (1.0, 0.0) will crop from the bottom left
|
||
|
corner, etc. (i.e. if cropping the width, take all of the
|
||
|
crop off the left side, and if cropping the height take
|
||
|
none from the top, and therefore all off the bottom).
|
||
|
:return: An image.
|
||
|
"""
|
||
|
|
||
|
# by Kevin Cazabon, Feb 17/2000
|
||
|
# kevin@cazabon.com
|
||
|
# https://www.cazabon.com
|
||
|
|
||
|
centering_x, centering_y = centering
|
||
|
|
||
|
if not 0.0 <= centering_x <= 1.0:
|
||
|
centering_x = 0.5
|
||
|
if not 0.0 <= centering_y <= 1.0:
|
||
|
centering_y = 0.5
|
||
|
|
||
|
if not 0.0 <= bleed < 0.5:
|
||
|
bleed = 0.0
|
||
|
|
||
|
# calculate the area to use for resizing and cropping, subtracting
|
||
|
# the 'bleed' around the edges
|
||
|
|
||
|
# number of pixels to trim off on Top and Bottom, Left and Right
|
||
|
bleed_pixels = (bleed * image.size[0], bleed * image.size[1])
|
||
|
|
||
|
live_size = (
|
||
|
image.size[0] - bleed_pixels[0] * 2,
|
||
|
image.size[1] - bleed_pixels[1] * 2,
|
||
|
)
|
||
|
|
||
|
# calculate the aspect ratio of the live_size
|
||
|
live_size_ratio = live_size[0] / live_size[1]
|
||
|
|
||
|
# calculate the aspect ratio of the output image
|
||
|
output_ratio = size[0] / size[1]
|
||
|
|
||
|
# figure out if the sides or top/bottom will be cropped off
|
||
|
if live_size_ratio == output_ratio:
|
||
|
# live_size is already the needed ratio
|
||
|
crop_width = live_size[0]
|
||
|
crop_height = live_size[1]
|
||
|
elif live_size_ratio >= output_ratio:
|
||
|
# live_size is wider than what's needed, crop the sides
|
||
|
crop_width = output_ratio * live_size[1]
|
||
|
crop_height = live_size[1]
|
||
|
else:
|
||
|
# live_size is taller than what's needed, crop the top and bottom
|
||
|
crop_width = live_size[0]
|
||
|
crop_height = live_size[0] / output_ratio
|
||
|
|
||
|
# make the crop
|
||
|
crop_left = bleed_pixels[0] + (live_size[0] - crop_width) * centering_x
|
||
|
crop_top = bleed_pixels[1] + (live_size[1] - crop_height) * centering_y
|
||
|
|
||
|
crop = (crop_left, crop_top, crop_left + crop_width, crop_top + crop_height)
|
||
|
|
||
|
# resize the image and return it
|
||
|
return image.resize(size, method, box=crop)
|
||
|
|
||
|
|
||
|
def flip(image: Image.Image) -> Image.Image:
|
||
|
"""
|
||
|
Flip the image vertically (top to bottom).
|
||
|
|
||
|
:param image: The image to flip.
|
||
|
:return: An image.
|
||
|
"""
|
||
|
return image.transpose(Image.Transpose.FLIP_TOP_BOTTOM)
|
||
|
|
||
|
|
||
|
def grayscale(image: Image.Image) -> Image.Image:
|
||
|
"""
|
||
|
Convert the image to grayscale.
|
||
|
|
||
|
:param image: The image to convert.
|
||
|
:return: An image.
|
||
|
"""
|
||
|
return image.convert("L")
|
||
|
|
||
|
|
||
|
def invert(image: Image.Image) -> Image.Image:
|
||
|
"""
|
||
|
Invert (negate) the image.
|
||
|
|
||
|
:param image: The image to invert.
|
||
|
:return: An image.
|
||
|
"""
|
||
|
lut = list(range(255, -1, -1))
|
||
|
return image.point(lut) if image.mode == "1" else _lut(image, lut)
|
||
|
|
||
|
|
||
|
def mirror(image: Image.Image) -> Image.Image:
|
||
|
"""
|
||
|
Flip image horizontally (left to right).
|
||
|
|
||
|
:param image: The image to mirror.
|
||
|
:return: An image.
|
||
|
"""
|
||
|
return image.transpose(Image.Transpose.FLIP_LEFT_RIGHT)
|
||
|
|
||
|
|
||
|
def posterize(image: Image.Image, bits: int) -> Image.Image:
|
||
|
"""
|
||
|
Reduce the number of bits for each color channel.
|
||
|
|
||
|
:param image: The image to posterize.
|
||
|
:param bits: The number of bits to keep for each channel (1-8).
|
||
|
:return: An image.
|
||
|
"""
|
||
|
mask = ~(2 ** (8 - bits) - 1)
|
||
|
lut = [i & mask for i in range(256)]
|
||
|
return _lut(image, lut)
|
||
|
|
||
|
|
||
|
def solarize(image: Image.Image, threshold: int = 128) -> Image.Image:
|
||
|
"""
|
||
|
Invert all pixel values above a threshold.
|
||
|
|
||
|
:param image: The image to solarize.
|
||
|
:param threshold: All pixels above this grayscale level are inverted.
|
||
|
:return: An image.
|
||
|
"""
|
||
|
lut = []
|
||
|
for i in range(256):
|
||
|
if i < threshold:
|
||
|
lut.append(i)
|
||
|
else:
|
||
|
lut.append(255 - i)
|
||
|
return _lut(image, lut)
|
||
|
|
||
|
|
||
|
def exif_transpose(image: Image.Image, *, in_place: bool = False) -> Image.Image | None:
|
||
|
"""
|
||
|
If an image has an EXIF Orientation tag, other than 1, transpose the image
|
||
|
accordingly, and remove the orientation data.
|
||
|
|
||
|
:param image: The image to transpose.
|
||
|
:param in_place: Boolean. Keyword-only argument.
|
||
|
If ``True``, the original image is modified in-place, and ``None`` is returned.
|
||
|
If ``False`` (default), a new :py:class:`~PIL.Image.Image` object is returned
|
||
|
with the transposition applied. If there is no transposition, a copy of the
|
||
|
image will be returned.
|
||
|
"""
|
||
|
image.load()
|
||
|
image_exif = image.getexif()
|
||
|
orientation = image_exif.get(ExifTags.Base.Orientation, 1)
|
||
|
method = {
|
||
|
2: Image.Transpose.FLIP_LEFT_RIGHT,
|
||
|
3: Image.Transpose.ROTATE_180,
|
||
|
4: Image.Transpose.FLIP_TOP_BOTTOM,
|
||
|
5: Image.Transpose.TRANSPOSE,
|
||
|
6: Image.Transpose.ROTATE_270,
|
||
|
7: Image.Transpose.TRANSVERSE,
|
||
|
8: Image.Transpose.ROTATE_90,
|
||
|
}.get(orientation)
|
||
|
if method is not None:
|
||
|
transposed_image = image.transpose(method)
|
||
|
if in_place:
|
||
|
image.im = transposed_image.im
|
||
|
image.pyaccess = None
|
||
|
image._size = transposed_image._size
|
||
|
exif_image = image if in_place else transposed_image
|
||
|
|
||
|
exif = exif_image.getexif()
|
||
|
if ExifTags.Base.Orientation in exif:
|
||
|
del exif[ExifTags.Base.Orientation]
|
||
|
if "exif" in exif_image.info:
|
||
|
exif_image.info["exif"] = exif.tobytes()
|
||
|
elif "Raw profile type exif" in exif_image.info:
|
||
|
exif_image.info["Raw profile type exif"] = exif.tobytes().hex()
|
||
|
for key in ("XML:com.adobe.xmp", "xmp"):
|
||
|
if key in exif_image.info:
|
||
|
for pattern in (
|
||
|
r'tiff:Orientation="([0-9])"',
|
||
|
r"<tiff:Orientation>([0-9])</tiff:Orientation>",
|
||
|
):
|
||
|
value = exif_image.info[key]
|
||
|
exif_image.info[key] = (
|
||
|
re.sub(pattern, "", value)
|
||
|
if isinstance(value, str)
|
||
|
else re.sub(pattern.encode(), b"", value)
|
||
|
)
|
||
|
if not in_place:
|
||
|
return transposed_image
|
||
|
elif not in_place:
|
||
|
return image.copy()
|
||
|
return None
|